Research Article
BibTex RIS Cite
Year 2021, , 721 - 731, 07.06.2021
https://doi.org/10.15672/hujms.708945

Abstract

References

  • [1] J. Aguirre, A. Dujella, M.J. Bokun and J.C. Peral, High rank elliptic curves with prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2), 222– 230, 2014.
  • [2] W. Bosma, J.J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma Functions, Edition 2.20-9, 2014.
  • [3] A. Brumer, The average rank of elliptic curves I, Invent. Math. 109 (1), 445–472, 1992.
  • [4] G. Campbell, Finding elliptic curves and families of elliptic curves over $\mathbb{Q}$ of large rank, PhD Thesis, Rutgers University, 1999.
  • [5] J.W.S. Cassels, Diophantine equations with special reference to elliptic curves, J. London. Math. Soc. 1 (1), 193-291, 1966.
  • [6] L.E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine analysis, Dover Publications, New York, 2005.
  • [7] A. Dujella, https://web.math.pmf.unizg.hr/~duje/index.html.
  • [8] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132, 23–33, 2002.
  • [9] A. Dujella, An example of elliptic curve over $\mathbb{Q}$ with rank equal to 15, Proc. Japan Acad. Ser. A Math. Sci. 78 (7), 109–111, 2002.
  • [10] A. Dujella, On the number of Diophantine m-tuples, Ramanujan J. 15, 37–46, 2008.
  • [11] A. Dujella and J.C. Peral, High rank elliptic curves with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} /4 \mathbb{Z}$ induced by Diophantine triples, LMS J. Comput. Math. 17, 282–288, 2014.
  • [12] A. Dujella and V. Petricevic, Strong Diophantine triples, Exp. Math. 17, 83–89, 2008.
  • [13] A. Filipin and A. Togbé, On the family of Diophantine triples $\left\lbrace k+2, 4k, 9k+6 \right\rbrace$, Acta Math. Acad. Paedagog. Nyhàzi. (N.S.)ü 25 (2), 145–153,2009.
  • [14] B. He and A. Togbé, On the family of Diophantine triples $\left\lbrace k+1, 4k, 9k+3\right\rbrace $, Period. Math. Hungar. 58 (1), 59–70, 2009.
  • [15] T. Honda, Isogenies, rational points and section points of group varieties, Jpn. J. Math. 30, 84–101, 1960.
  • [16] J.F. Mestre, Construction de courbes elliptiques sur $\mathbb{Q}$ de rang $\geq 12$, C. R. Acad. Sci. Paris, Série I, 295, 643--644, 1982.
  • [17] J.F. Mestre, Courbes elliptiques de rang $\geq 11$ sur $\mathbb{Q}(T)$, C. R. Acad. Sci. Paris, Série I, 313, 139-142, 1991.
  • [18] D. Moody, M. Sadek and A.S. Zargar, Families of elliptic curves of rank $\geq 5$ over $\mathbb{Q}(t)$, Rocky Mountain J. Math. 49 (7), 2253–2266, 2019.
  • [19] K. Nagao, An example of elliptic curve over $\mathbb{Q}$ with rank $> 20$, Proc. Japan Acad. Ser. A Math. Sci. 69, 291-293, 1993.
  • [20] K. Nagao, An example of elliptic curve over $\mathbb{Q}$ with rank $\geq 21$, Proc. Japan Acad. Ser. A Math. Sci. 70, 104-105, 1994.
  • [21] The PARI Group, PARI/GP version 2.9.1, Univ. Bordeaux, 2016, http://pari. math.u-bordeaux.fr/.
  • [22] J. Park, B. Poonen, J. Voight and M.M. Wood, A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc. 21, 2859–2903, 2019, doi: 10.4171/JEMS/893.
  • [23] N. Saunderson, The Elements of Algebra, Book 6, Cambridge University Press, Cambridge, 1740.
  • [24] J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd Edition, Vol. 106, Springer Science and Business Media, 2009.
  • [25] J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Vol. 151, Springer Science and Business Media, 2013.
  • [26] J.T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (3-4), 179–206, 1974.
  • [27] A.S. Zargar and N. Zamani, A Family of Elliptic Curves of Rank $\geq 5$ over $\mathbb{Q}(m)$, Notes Number Theory Discrete Math. 25 (4), 24–29, 2019.

Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$

Year 2021, , 721 - 731, 07.06.2021
https://doi.org/10.15672/hujms.708945

Abstract

Motivated by the work of Zargar and Zamani, we introduce a family of elliptic curves containing several one- (respectively two-) parameter subfamilies of high rank over the function field $\mathbb{Q}(t)$ (respectively $\mathbb{Q}(t,k)$). Following the approach of Moody, we construct two subfamilies of infinitely many elliptic curves of rank at least 5 over $\mathbb{Q}(t,k)$. Secondly, we deduce two other subfamilies of this family, induced by the edges of a rational cuboid containing five independent $\mathbb{Q}(t)$-rational points. Finally, we give a new subfamily induced by Diophantine triples with rank at least 5 over $\mathbb{Q}(t)$. By specialization, we obtain some specific examples of elliptic curves over $\mathbb{Q}$ with a high rank (8, 9, 10 and 11).

References

  • [1] J. Aguirre, A. Dujella, M.J. Bokun and J.C. Peral, High rank elliptic curves with prescribed torsion group over quadratic fields, Period. Math. Hungar. 68 (2), 222– 230, 2014.
  • [2] W. Bosma, J.J. Cannon, C. Fieker and A. Steel (eds.), Handbook of Magma Functions, Edition 2.20-9, 2014.
  • [3] A. Brumer, The average rank of elliptic curves I, Invent. Math. 109 (1), 445–472, 1992.
  • [4] G. Campbell, Finding elliptic curves and families of elliptic curves over $\mathbb{Q}$ of large rank, PhD Thesis, Rutgers University, 1999.
  • [5] J.W.S. Cassels, Diophantine equations with special reference to elliptic curves, J. London. Math. Soc. 1 (1), 193-291, 1966.
  • [6] L.E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine analysis, Dover Publications, New York, 2005.
  • [7] A. Dujella, https://web.math.pmf.unizg.hr/~duje/index.html.
  • [8] A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132, 23–33, 2002.
  • [9] A. Dujella, An example of elliptic curve over $\mathbb{Q}$ with rank equal to 15, Proc. Japan Acad. Ser. A Math. Sci. 78 (7), 109–111, 2002.
  • [10] A. Dujella, On the number of Diophantine m-tuples, Ramanujan J. 15, 37–46, 2008.
  • [11] A. Dujella and J.C. Peral, High rank elliptic curves with torsion $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z} /4 \mathbb{Z}$ induced by Diophantine triples, LMS J. Comput. Math. 17, 282–288, 2014.
  • [12] A. Dujella and V. Petricevic, Strong Diophantine triples, Exp. Math. 17, 83–89, 2008.
  • [13] A. Filipin and A. Togbé, On the family of Diophantine triples $\left\lbrace k+2, 4k, 9k+6 \right\rbrace$, Acta Math. Acad. Paedagog. Nyhàzi. (N.S.)ü 25 (2), 145–153,2009.
  • [14] B. He and A. Togbé, On the family of Diophantine triples $\left\lbrace k+1, 4k, 9k+3\right\rbrace $, Period. Math. Hungar. 58 (1), 59–70, 2009.
  • [15] T. Honda, Isogenies, rational points and section points of group varieties, Jpn. J. Math. 30, 84–101, 1960.
  • [16] J.F. Mestre, Construction de courbes elliptiques sur $\mathbb{Q}$ de rang $\geq 12$, C. R. Acad. Sci. Paris, Série I, 295, 643--644, 1982.
  • [17] J.F. Mestre, Courbes elliptiques de rang $\geq 11$ sur $\mathbb{Q}(T)$, C. R. Acad. Sci. Paris, Série I, 313, 139-142, 1991.
  • [18] D. Moody, M. Sadek and A.S. Zargar, Families of elliptic curves of rank $\geq 5$ over $\mathbb{Q}(t)$, Rocky Mountain J. Math. 49 (7), 2253–2266, 2019.
  • [19] K. Nagao, An example of elliptic curve over $\mathbb{Q}$ with rank $> 20$, Proc. Japan Acad. Ser. A Math. Sci. 69, 291-293, 1993.
  • [20] K. Nagao, An example of elliptic curve over $\mathbb{Q}$ with rank $\geq 21$, Proc. Japan Acad. Ser. A Math. Sci. 70, 104-105, 1994.
  • [21] The PARI Group, PARI/GP version 2.9.1, Univ. Bordeaux, 2016, http://pari. math.u-bordeaux.fr/.
  • [22] J. Park, B. Poonen, J. Voight and M.M. Wood, A heuristic for boundedness of ranks of elliptic curves, J. Eur. Math. Soc. 21, 2859–2903, 2019, doi: 10.4171/JEMS/893.
  • [23] N. Saunderson, The Elements of Algebra, Book 6, Cambridge University Press, Cambridge, 1740.
  • [24] J.H. Silverman, The Arithmetic of Elliptic Curves, 2nd Edition, Vol. 106, Springer Science and Business Media, 2009.
  • [25] J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Vol. 151, Springer Science and Business Media, 2013.
  • [26] J.T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (3-4), 179–206, 1974.
  • [27] A.S. Zargar and N. Zamani, A Family of Elliptic Curves of Rank $\geq 5$ over $\mathbb{Q}(m)$, Notes Number Theory Discrete Math. 25 (4), 24–29, 2019.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ahmed El Amine Youmbaı 0000-0002-3641-1800

A. Muhammed Uludağ 0000-0001-7761-8472

Djilali Behloul This is me 0000-0003-4631-5529

Publication Date June 7, 2021
Published in Issue Year 2021

Cite

APA Youmbaı, A. E. A., Uludağ, A. M., & Behloul, D. (2021). Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$. Hacettepe Journal of Mathematics and Statistics, 50(3), 721-731. https://doi.org/10.15672/hujms.708945
AMA Youmbaı AEA, Uludağ AM, Behloul D. Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):721-731. doi:10.15672/hujms.708945
Chicago Youmbaı, Ahmed El Amine, A. Muhammed Uludağ, and Djilali Behloul. “Elliptic Curve Involving Subfamilies of Rank at Least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 721-31. https://doi.org/10.15672/hujms.708945.
EndNote Youmbaı AEA, Uludağ AM, Behloul D (June 1, 2021) Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$. Hacettepe Journal of Mathematics and Statistics 50 3 721–731.
IEEE A. E. A. Youmbaı, A. M. Uludağ, and D. Behloul, “Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 721–731, 2021, doi: 10.15672/hujms.708945.
ISNAD Youmbaı, Ahmed El Amine et al. “Elliptic Curve Involving Subfamilies of Rank at Least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 721-731. https://doi.org/10.15672/hujms.708945.
JAMA Youmbaı AEA, Uludağ AM, Behloul D. Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$. Hacettepe Journal of Mathematics and Statistics. 2021;50:721–731.
MLA Youmbaı, Ahmed El Amine et al. “Elliptic Curve Involving Subfamilies of Rank at Least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 721-3, doi:10.15672/hujms.708945.
Vancouver Youmbaı AEA, Uludağ AM, Behloul D. Elliptic curve involving subfamilies of rank at least 5 over $\mathbb{Q}(t)$ or $\mathbb{Q}(t,k)$. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):721-3.

Cited By

On elliptic curves induced by rational Diophantine quadruples
Proceedings of the Japan Academy, Series A, Mathematical Sciences
https://doi.org/10.3792/pjaa.98.001