Year 2022,
, 156 - 171, 14.02.2022
Sushil Kumar Kumar
,
Asena Çetinkaya
References
- [1] R.M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math.
Sci. Soc. 26 (1), 63-71, 2003.
- [2] M.F. Ali, D.K. Thomas and A. Vasudevarao, Toeplitz determinants whose elements
are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97 (2),
253-264, 2018.
- [3] M.K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math.
Lett. 21, 1184-1187, 2008.
- [4] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,
Ineq. Theory and Appl. 6, 1-7, 2010.
- [5] N. Breaz and R.M. El-Ashwah, Quasi-Hadamard product of some uniformly analytic
and p-valent functions with negative coefficients, Carpathian J. Math. 30 (1), 39-45,
2014.
- [6] T. Bulboacă, M.K. Aouf and R.M. El-Ashwah, Convolution properties for subclasses
of meromorphic univalent functions of complex order, Filomat 26 (1), 153-163, 2012.
- [7] K. Cudna, O.S. Kwon, A. Lecko, Y.J. Sim and B. Śmiarowska, The second and third-
order Hermitian Toeplitz determinants for starlike and convex functions of order ,
Bol. Soc. Mat. Mex. (3) 26 (2), 361-375, 2020.
- [8] P.L. Duren, Univalent Functions, 259, Springer, New York, 1983.
- [9] R.M. El-Ashwah, Some convolution and inclusion properties for subclasses of bounded
univalent functions of complex order, Thai J. Math. 12 (2), 373-384, 2014.
- [10] H. Güney, S. İlhan and J. Sokół, An upper bound for third Hankel determinant of
starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3) 25
(1), 117-129, 2019.
- [11] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc.
London Math. Soc. (3) 18, 77-94, 1968.
- [12] H.M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstratio
Math. 33 (2), 277-281, 2000.
- [13] W. Janowski, Some extremal problems for certain families of analytic functions I,
Ann. Polon. Math. 28, 297-326, 1973.
- [14] P. Jastrz¸ebski B. Kowalczyk, Oh S. Kwon, A. Lecko and Y.J. Sim, Hermitian Toeplitz
determinants of the second and third-order for classes of close-to-star functions, Rev.
R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (4), 166, 2020.
- [15] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169-185, 1952.
- [16] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions,
Anal. Math. Phys. 9 (1), 143-154, 2019.
- [17] B. Kowalczyk, A. Lecko and Y.J. Sim, The sharp bound for the Hankel determinant
of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (3), 435-445, 2018.
- [18] D. Kucerovsky, K. Mousavand and A. Sarraf, On some properties of Toeplitz matrices,
Cogent Math. 3, 2016 (Article ID 1154705).
- [19] V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl.
113, 230-234, 1986.
- [20] V. Kumar, N. E. Cho, V. Ravichandran and H.M. Srivastava, Sharp coefficient bounds
for starlike functions associated with the Bell numbers, Math. Slovaca 69 (5), 1053-
1064, 2019.
- [21] V. Kumar and S. Kumar, Bounds on Hermitian-Toeplitz and Hankel determinants
for strongly starlike functions, Bol. Soc. Mat. Mex. (3) 27 (2), 1-16, 2021.
- [22] V. Kumar, S. Kumar and V. Ravichandran, Third Hankel determinant for certain
classes of analytic functions, in: International Conference on Recent Advances in
Pure and Applied Mathematics, 223-231, Springer, Singapore, 2018.
- [23] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.
- [24] O.S. Kwon, A. Lecko and Y.J. Sim, The bound of the Hankel determinant of the third
kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2), 767-780, 2019.
- [25] A. Lecko, Y.J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant
of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13
(5), 2231-2238, 2019.
- [26] S.K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel de-
terminant of certain univalent functions, J. Inequal. Appl. 2013 (1), 1-17, 2013.
- [27] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with
derivative in P, Proc. Amer. Math. Soc. 87 (2), 251-257, 1983.
- [28] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent func-
tions, in: Proceedings of the Conference on Complex Analysis, 157-169, International
Press Inc., 1992.
- [29] P.T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représen-
tation conforme, Mathematica (Cluj) 34 (11), 127-133, 1969.
- [30] S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon,
27 (4), 409-416, 1982.
- [31] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions,
J. London Math. Soc. 41, 111-122, 1966.
- [32] Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika
14, 108-112, 1967.
- [33] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike
functions, C. R. Math. Acad. Sci. Paris, 353 (6), 505-510, 2015.
- [34] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3, 59-62,
1955.
- [35] M.S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (2), 135-
140, 1985.
- [36] W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Poten-
zreihen, Math. Z. 35 (1), 93-121, 1932.
- [37] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.
- [38] J. Sokół, and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101-105, 1996.
- [39] Y. Sun, Z.-G. Wang and A. Rasila, On third Hankel determinants for subclasses of
analytic functions and close-to-convex harmonic mappings, Hacett. J. Math. Stat. 48
(6), 1695-1705, 2019.
- [40] L.A. Wani and A. Swaminathan, Starlike and convex functions associated with a
nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (1), 79-104, 2021.
- [41] L.A. Wani and A. Swaminathan, Radius problems for functions associated with a
nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114
(4), 178, 2020.
- [42] K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput.
Math. 16, 577-598, 2016.
- [43] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,
Mediterr. J. Math. 14 (1), 1-10, 2017.
Coefficient inequalities for certain starlike and convex functions
Year 2022,
, 156 - 171, 14.02.2022
Sushil Kumar Kumar
,
Asena Çetinkaya
Abstract
In this paper, we consider two Ma--Minda-type subclasses of starlike and convex functions associated with the normalized analytic function $\varphi_{Ne}(z)=1+z-z^3/3$ that maps an open unit disk onto the Nephroid shaped bounded domain in the right--half of the complex plane. We investigate convolution and quasi-Hadamard product properties for the functions belonging to such classes. In addition, we compute best possible estimates on third order Hermitian--Toeplitz determinant and non-sharp estimates on certain third order Hankel determinants for the starlike functions associated with the interior region of Nephroid.
References
- [1] R.M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math.
Sci. Soc. 26 (1), 63-71, 2003.
- [2] M.F. Ali, D.K. Thomas and A. Vasudevarao, Toeplitz determinants whose elements
are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc. 97 (2),
253-264, 2018.
- [3] M.K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math.
Lett. 21, 1184-1187, 2008.
- [4] K.O. Babalola, On H3(1) Hankel determinant for some classes of univalent functions,
Ineq. Theory and Appl. 6, 1-7, 2010.
- [5] N. Breaz and R.M. El-Ashwah, Quasi-Hadamard product of some uniformly analytic
and p-valent functions with negative coefficients, Carpathian J. Math. 30 (1), 39-45,
2014.
- [6] T. Bulboacă, M.K. Aouf and R.M. El-Ashwah, Convolution properties for subclasses
of meromorphic univalent functions of complex order, Filomat 26 (1), 153-163, 2012.
- [7] K. Cudna, O.S. Kwon, A. Lecko, Y.J. Sim and B. Śmiarowska, The second and third-
order Hermitian Toeplitz determinants for starlike and convex functions of order ,
Bol. Soc. Mat. Mex. (3) 26 (2), 361-375, 2020.
- [8] P.L. Duren, Univalent Functions, 259, Springer, New York, 1983.
- [9] R.M. El-Ashwah, Some convolution and inclusion properties for subclasses of bounded
univalent functions of complex order, Thai J. Math. 12 (2), 373-384, 2014.
- [10] H. Güney, S. İlhan and J. Sokół, An upper bound for third Hankel determinant of
starlike functions connected with k-Fibonacci numbers, Bol. Soc. Mat. Mex. (3) 25
(1), 117-129, 2019.
- [11] W.K. Hayman, On the second Hankel determinant of mean univalent functions, Proc.
London Math. Soc. (3) 18, 77-94, 1968.
- [12] H.M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstratio
Math. 33 (2), 277-281, 2000.
- [13] W. Janowski, Some extremal problems for certain families of analytic functions I,
Ann. Polon. Math. 28, 297-326, 1973.
- [14] P. Jastrz¸ebski B. Kowalczyk, Oh S. Kwon, A. Lecko and Y.J. Sim, Hermitian Toeplitz
determinants of the second and third-order for classes of close-to-star functions, Rev.
R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (4), 166, 2020.
- [15] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1, 169-185, 1952.
- [16] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions,
Anal. Math. Phys. 9 (1), 143-154, 2019.
- [17] B. Kowalczyk, A. Lecko and Y.J. Sim, The sharp bound for the Hankel determinant
of the third kind for convex functions, Bull. Aust. Math. Soc. 97 (3), 435-445, 2018.
- [18] D. Kucerovsky, K. Mousavand and A. Sarraf, On some properties of Toeplitz matrices,
Cogent Math. 3, 2016 (Article ID 1154705).
- [19] V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl.
113, 230-234, 1986.
- [20] V. Kumar, N. E. Cho, V. Ravichandran and H.M. Srivastava, Sharp coefficient bounds
for starlike functions associated with the Bell numbers, Math. Slovaca 69 (5), 1053-
1064, 2019.
- [21] V. Kumar and S. Kumar, Bounds on Hermitian-Toeplitz and Hankel determinants
for strongly starlike functions, Bol. Soc. Mat. Mex. (3) 27 (2), 1-16, 2021.
- [22] V. Kumar, S. Kumar and V. Ravichandran, Third Hankel determinant for certain
classes of analytic functions, in: International Conference on Recent Advances in
Pure and Applied Mathematics, 223-231, Springer, Singapore, 2018.
- [23] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.
- [24] O.S. Kwon, A. Lecko and Y.J. Sim, The bound of the Hankel determinant of the third
kind for starlike functions, Bull. Malays. Math. Sci. Soc. 42 (2), 767-780, 2019.
- [25] A. Lecko, Y.J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant
of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13
(5), 2231-2238, 2019.
- [26] S.K. Lee, V. Ravichandran and S. Supramaniam, Bounds for the second Hankel de-
terminant of certain univalent functions, J. Inequal. Appl. 2013 (1), 1-17, 2013.
- [27] R.J. Libera and E.J. Złotkiewicz, Coefficient bounds for the inverse of a function with
derivative in P, Proc. Amer. Math. Soc. 87 (2), 251-257, 1983.
- [28] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent func-
tions, in: Proceedings of the Conference on Complex Analysis, 157-169, International
Press Inc., 1992.
- [29] P.T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représen-
tation conforme, Mathematica (Cluj) 34 (11), 127-133, 1969.
- [30] S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon,
27 (4), 409-416, 1982.
- [31] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions,
J. London Math. Soc. 41, 111-122, 1966.
- [32] Ch. Pommerenke, On the Hankel determinants of univalent functions, Mathematika
14, 108-112, 1967.
- [33] V. Ravichandran and S. Verma, Bound for the fifth coefficient of certain starlike
functions, C. R. Math. Acad. Sci. Paris, 353 (6), 505-510, 2015.
- [34] M.O. Reade, On close-to-convex univalent functions, Michigan Math. J. 3, 59-62,
1955.
- [35] M.S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (2), 135-
140, 1985.
- [36] W. Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Poten-
zreihen, Math. Z. 35 (1), 93-121, 1932.
- [37] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.
- [38] J. Sokół, and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19, 101-105, 1996.
- [39] Y. Sun, Z.-G. Wang and A. Rasila, On third Hankel determinants for subclasses of
analytic functions and close-to-convex harmonic mappings, Hacett. J. Math. Stat. 48
(6), 1695-1705, 2019.
- [40] L.A. Wani and A. Swaminathan, Starlike and convex functions associated with a
nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (1), 79-104, 2021.
- [41] L.A. Wani and A. Swaminathan, Radius problems for functions associated with a
nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114
(4), 178, 2020.
- [42] K. Ye and L.-H. Lim, Every matrix is a product of Toeplitz matrices, Found. Comput.
Math. 16, 577-598, 2016.
- [43] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions,
Mediterr. J. Math. 14 (1), 1-10, 2017.