Research Article
BibTex RIS Cite
Year 2021, , 1047 - 1062, 06.08.2021
https://doi.org/10.15672/hujms.796762

Abstract

References

  • [1] G.A. Anastassiou and O. Duman, Towads intelligent modeling: Statistical approximation theory, Intelligent System Reference Library 14, Springer-Verlag, Berlin, Heidelberg, New York, 2011.
  • [2] Ö.G. Atlıhan and C. Orhan, Matrix summability and positive linear operators, Positivity 11, 387–389, 2007.
  • [3] Ö.G. Atlıhan and C. Orhan, Summation process of positive linear operators, Comput. Math. Appl. 56, 1188–1195, 2008.
  • [4] C. Bardaro and I. Mantellini, Korovkin’s theorem in modular spaces, Comment. Math. 47, 239–253, 2007.
  • [5] C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, Walter de Gruyter, Berlin, Germany, 2003.
  • [6] C. Bardaro, A. Boccuto, X. Dimitriou and I. Mantellini, Abstract Korovkin type theorems in modular spaces and applications, Cent. Eur. J. Math. 11 (10), 1774–1784, 2013.
  • [7] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini and S. Orhan, Korovkin-Type Theorems for Modular $\Psi -A-$Statistical Convergence, J. Funct. Spaces, 2015, 1–11, 2015.
  • [8] A. Boccuto and X. Dimitriou, Korovkin-type theorems for abstract modular convergence, Results Math. 69 (3-4), 477–495, 2016.
  • [9] K. Demirci, $I-$limit superior and limit inferior, Math. Commun. 6, 165-172, 2001.
  • [10] K. Demirci, S. Orhan and B. Kolay, Statistical Relative $A-$Summation Process for Double Sequences on Modular Spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 112, 1249–1264, 2018.
  • [11] F. Dirik and K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense, Turk. J. Math. 34, 73–83, 2010.
  • [12] J. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (12), 3625–3631, 1997.
  • [13] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32, 129–138, 2002.
  • [14] U. Kadak, Relative weighted almost convergence based on fractional-order difference operator in multivariate modular function spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (3), 2201–2220, 2019.
  • [15] U. Kadak and S.A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the $(p,q)$-gamma function and related approximation theorems, Results Math. 73 (1), 1–31, 2018.
  • [16] S. Karakuş, K. Demirci and O. Duman, Statistical approximation by positive linear operators on modular spaces, Positivity 14, 321–334, 2010.
  • [17] B. Kolay, S. Orhan, and K. Demirci, Statistical Relative A−Summation Process and Korovkin-Type approximation Theorem on Modular Spaces, Iran. J. Sci. Technol. Trans. A Sci. 42 (2), 683–692, 2018.
  • [18] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
  • [19] W.M. Kozlowski, Modular function spaces, Pure Appl. Math. 122, Marcel Dekker, Inc., New York, 1988.
  • [20] K. Kuratowski, Topology I-II, Academic Press/PWN, New York-London/Warsaw, 1966/1968.
  • [21] I. Mantellini, Generalized sampling operators in modular spaces, Comment. Math. 38, 77–92, 1998.
  • [22] S.A. Mohiuddine and B.A.S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113 (3), 1955–1973, 2019.
  • [23] S.A. Mohiuddine, B. Hazarika and M.A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33 (14), 4549–4560, 2019.
  • [24] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283–294, 1988.
  • [25] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.
  • [26] J. Musielak, Nonlinear approximation in some modular function spaces I, Math. Japon. 38, 83–90, 1993.
  • [27] T. Nishishiraho, Quantitative theorems on linear approximation processes of convolution operators in Banach spaces, T˘ohoku Math. J. 33, 109–126, 1981.
  • [28] T. Nishishiraho, Convergence of positive linear approximation processes, T˘ohoku Math. J. 35, 441–458, 1983.
  • [29] S. Orhan and K. Demirci, Statistical $A$−summation process and Korovkin type approximation theorem on modular spaces, Positivity, 18 (4), 669–686, 2014.
  • [30] S. Orhan and K. Demirci, Statistical approximation by double sequences of positive linear operators on modular spaces, Positivity 19, 23–36, 2015.
  • [31] S. Orhan and B. Kolay, Korovkin type approximation for double sequences via statistical $A$−summation process on modular spaces, Stud. Univ. Babeş-Bolyai Math. 63 (1), 125–140, 2018.
  • [32] R.F. Patterson and E. Savaş, Uniformly summable double sequences, Studia Sci. Math. Hungar. 44, 147–158, 2007.
  • [33] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53, 289–321, 1900.
  • [34] E. Savaş and B.E. Rhoades, Double summability factor theorems and applications, Math. Inequal. Appl. 10, 125–149, 2007.
  • [35] E. Taş, Abstract Korovkin type theorems on modular spaces by $A$-summability, Math. Bohem. 143 (4), 419–430, 2018.
  • [36] S. Yıldız, Abstract versions of Korovkin theorems on modular spaces via statistical relative summation process for double sequences, Tbilisi Math. J. 13 (1), 139–156, 2020.

$\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems

Year 2021, , 1047 - 1062, 06.08.2021
https://doi.org/10.15672/hujms.796762

Abstract

In this paper, we first introduce the notions of $\mathcal{F-}$relative modular convergence and $\mathcal{F-}$relative strong convergence for double sequences of functions. Then we prove some Korovkin-type approximation theorems via $\mathcal{F-}$relative $\mathcal{A}-$summation process on modular spaces for double sequences of positive linear operators. Also, we present a non-trivial application such that our Korovkin-type approximation results in modular spaces are stronger than the classical ones and we present some estimates of rates of convergence for abstract Korovkin-type theorems. Furthermore, we relax the positivity condition of linear operators in the Korovkin theorems and study an extension to non-positive operators.

References

  • [1] G.A. Anastassiou and O. Duman, Towads intelligent modeling: Statistical approximation theory, Intelligent System Reference Library 14, Springer-Verlag, Berlin, Heidelberg, New York, 2011.
  • [2] Ö.G. Atlıhan and C. Orhan, Matrix summability and positive linear operators, Positivity 11, 387–389, 2007.
  • [3] Ö.G. Atlıhan and C. Orhan, Summation process of positive linear operators, Comput. Math. Appl. 56, 1188–1195, 2008.
  • [4] C. Bardaro and I. Mantellini, Korovkin’s theorem in modular spaces, Comment. Math. 47, 239–253, 2007.
  • [5] C. Bardaro, J. Musielak and G. Vinti, Nonlinear Integral Operators and Applications, Walter de Gruyter, Berlin, Germany, 2003.
  • [6] C. Bardaro, A. Boccuto, X. Dimitriou and I. Mantellini, Abstract Korovkin type theorems in modular spaces and applications, Cent. Eur. J. Math. 11 (10), 1774–1784, 2013.
  • [7] C. Bardaro, A. Boccuto, K. Demirci, I. Mantellini and S. Orhan, Korovkin-Type Theorems for Modular $\Psi -A-$Statistical Convergence, J. Funct. Spaces, 2015, 1–11, 2015.
  • [8] A. Boccuto and X. Dimitriou, Korovkin-type theorems for abstract modular convergence, Results Math. 69 (3-4), 477–495, 2016.
  • [9] K. Demirci, $I-$limit superior and limit inferior, Math. Commun. 6, 165-172, 2001.
  • [10] K. Demirci, S. Orhan and B. Kolay, Statistical Relative $A-$Summation Process for Double Sequences on Modular Spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 112, 1249–1264, 2018.
  • [11] F. Dirik and K. Demirci, Korovkin type approximation theorem for functions of two variables in statistical sense, Turk. J. Math. 34, 73–83, 2010.
  • [12] J. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (12), 3625–3631, 1997.
  • [13] A.D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32, 129–138, 2002.
  • [14] U. Kadak, Relative weighted almost convergence based on fractional-order difference operator in multivariate modular function spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 113 (3), 2201–2220, 2019.
  • [15] U. Kadak and S.A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the $(p,q)$-gamma function and related approximation theorems, Results Math. 73 (1), 1–31, 2018.
  • [16] S. Karakuş, K. Demirci and O. Duman, Statistical approximation by positive linear operators on modular spaces, Positivity 14, 321–334, 2010.
  • [17] B. Kolay, S. Orhan, and K. Demirci, Statistical Relative A−Summation Process and Korovkin-Type approximation Theorem on Modular Spaces, Iran. J. Sci. Technol. Trans. A Sci. 42 (2), 683–692, 2018.
  • [18] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi, 1960.
  • [19] W.M. Kozlowski, Modular function spaces, Pure Appl. Math. 122, Marcel Dekker, Inc., New York, 1988.
  • [20] K. Kuratowski, Topology I-II, Academic Press/PWN, New York-London/Warsaw, 1966/1968.
  • [21] I. Mantellini, Generalized sampling operators in modular spaces, Comment. Math. 38, 77–92, 1998.
  • [22] S.A. Mohiuddine and B.A.S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 113 (3), 1955–1973, 2019.
  • [23] S.A. Mohiuddine, B. Hazarika and M.A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat, 33 (14), 4549–4560, 2019.
  • [24] F. Moricz and B.E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc. 104, 283–294, 1988.
  • [25] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034, Springer-Verlag, Berlin, 1983.
  • [26] J. Musielak, Nonlinear approximation in some modular function spaces I, Math. Japon. 38, 83–90, 1993.
  • [27] T. Nishishiraho, Quantitative theorems on linear approximation processes of convolution operators in Banach spaces, T˘ohoku Math. J. 33, 109–126, 1981.
  • [28] T. Nishishiraho, Convergence of positive linear approximation processes, T˘ohoku Math. J. 35, 441–458, 1983.
  • [29] S. Orhan and K. Demirci, Statistical $A$−summation process and Korovkin type approximation theorem on modular spaces, Positivity, 18 (4), 669–686, 2014.
  • [30] S. Orhan and K. Demirci, Statistical approximation by double sequences of positive linear operators on modular spaces, Positivity 19, 23–36, 2015.
  • [31] S. Orhan and B. Kolay, Korovkin type approximation for double sequences via statistical $A$−summation process on modular spaces, Stud. Univ. Babeş-Bolyai Math. 63 (1), 125–140, 2018.
  • [32] R.F. Patterson and E. Savaş, Uniformly summable double sequences, Studia Sci. Math. Hungar. 44, 147–158, 2007.
  • [33] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. 53, 289–321, 1900.
  • [34] E. Savaş and B.E. Rhoades, Double summability factor theorems and applications, Math. Inequal. Appl. 10, 125–149, 2007.
  • [35] E. Taş, Abstract Korovkin type theorems on modular spaces by $A$-summability, Math. Bohem. 143 (4), 419–430, 2018.
  • [36] S. Yıldız, Abstract versions of Korovkin theorems on modular spaces via statistical relative summation process for double sequences, Tbilisi Math. J. 13 (1), 139–156, 2020.
There are 36 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Sevda Yıldız 0000-0002-4730-2271

Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Yıldız, S. (2021). $\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems. Hacettepe Journal of Mathematics and Statistics, 50(4), 1047-1062. https://doi.org/10.15672/hujms.796762
AMA Yıldız S. $\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1047-1062. doi:10.15672/hujms.796762
Chicago Yıldız, Sevda. “$\mathcal{F-}$relative $\mathcal{A-}$summation Process for Double Sequences and Abstract Korovkin Type Theorems”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1047-62. https://doi.org/10.15672/hujms.796762.
EndNote Yıldız S (August 1, 2021) $\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems. Hacettepe Journal of Mathematics and Statistics 50 4 1047–1062.
IEEE S. Yıldız, “$\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1047–1062, 2021, doi: 10.15672/hujms.796762.
ISNAD Yıldız, Sevda. “$\mathcal{F-}$relative $\mathcal{A-}$summation Process for Double Sequences and Abstract Korovkin Type Theorems”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1047-1062. https://doi.org/10.15672/hujms.796762.
JAMA Yıldız S. $\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems. Hacettepe Journal of Mathematics and Statistics. 2021;50:1047–1062.
MLA Yıldız, Sevda. “$\mathcal{F-}$relative $\mathcal{A-}$summation Process for Double Sequences and Abstract Korovkin Type Theorems”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1047-62, doi:10.15672/hujms.796762.
Vancouver Yıldız S. $\mathcal{F-}$relative $\mathcal{A-}$summation process for double sequences and abstract Korovkin type theorems. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1047-62.