Research Article
BibTex RIS Cite
Year 2021, , 1737 - 1744, 14.12.2021
https://doi.org/10.15672/hujms.829790

Abstract

References

  • [1] M. Daniel and C.M. Viallet, The geometrical setting of gauge theories of the Yang- Mills type, Reviews of modern physics, 52(1), 175–197, 1980.
  • [2] M. Göckeler and T. Schucker, Differential geometry, Gauge theories and gravity, Cam- bridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1987.
  • [3] W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Vol. 1, Academic Press, New York and London, 1972.
  • [4] R. Healey, Gauging what’s real: the conceptual foundations of contemporary gauge theories, Oxford University Press, New York, 2007.
  • [5] C.J. Isham, Modern Differential Geometry For Physicists, World Scientific, 2003.
  • [6] T.A. Ivey and J.M. Landsberg, Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate studies in Maths. 61, AMS Providence Rhode Island, 2003.
  • [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.1, Interscience Publishers, New York and London, 1963.
  • [8] I. Kolàr, P. Michor and J. Slovak, Natural operations in differential geometry, Springer-Verlag, Berlin Heidelberg, 1993.
  • [9] K. Nomizu, Lie Groups and Differential Geometry, Mathematical Society of Japan , 1954.
  • [10] W.A. Poor, Differential geometric structures, Dover Pubs. Inc. Mineola, New York, 2007.
  • [11] G. Rudolph and M. Schmidt, Differential geometry and mathematical physics. Part 1, Springer, 2013.
  • [12] R.W. Sharpe, Differential geometry: Cartan’s generalization of Klein Erlangen program, GTM 166, Springer, New York, 2000.
  • [13] M. Spivak, A comprehensive introduction to differential geometry II, Publish or Perish Inc., Houston, 1979.
  • [14] S. Sternberg, Lectures on Differential Geometry, AMS Chelsea, 1983.
  • [15] C.M. Wood, An existence theorem for harmonic sections, Manuscr. Math. 68, 69–75, 1990.

A note on induced connections

Year 2021, , 1737 - 1744, 14.12.2021
https://doi.org/10.15672/hujms.829790

Abstract

In this note, we will exploit the classical bijective correspondence between sections of an associated vector bundle and equivariant functions on the underlying principal bundle to revisit a global formula for induced connections on associated vector bundles. Consequently, we give the expression of the curvature in terms of the curvature 2-form of a connection on a principal bundle.

References

  • [1] M. Daniel and C.M. Viallet, The geometrical setting of gauge theories of the Yang- Mills type, Reviews of modern physics, 52(1), 175–197, 1980.
  • [2] M. Göckeler and T. Schucker, Differential geometry, Gauge theories and gravity, Cam- bridge Monographs on Mathematical Physics, Cambridge Univ. Press, 1987.
  • [3] W. Greub, S. Halperin and R. Vanstone, Connections, Curvature and Cohomology, Vol. 1, Academic Press, New York and London, 1972.
  • [4] R. Healey, Gauging what’s real: the conceptual foundations of contemporary gauge theories, Oxford University Press, New York, 2007.
  • [5] C.J. Isham, Modern Differential Geometry For Physicists, World Scientific, 2003.
  • [6] T.A. Ivey and J.M. Landsberg, Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate studies in Maths. 61, AMS Providence Rhode Island, 2003.
  • [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol.1, Interscience Publishers, New York and London, 1963.
  • [8] I. Kolàr, P. Michor and J. Slovak, Natural operations in differential geometry, Springer-Verlag, Berlin Heidelberg, 1993.
  • [9] K. Nomizu, Lie Groups and Differential Geometry, Mathematical Society of Japan , 1954.
  • [10] W.A. Poor, Differential geometric structures, Dover Pubs. Inc. Mineola, New York, 2007.
  • [11] G. Rudolph and M. Schmidt, Differential geometry and mathematical physics. Part 1, Springer, 2013.
  • [12] R.W. Sharpe, Differential geometry: Cartan’s generalization of Klein Erlangen program, GTM 166, Springer, New York, 2000.
  • [13] M. Spivak, A comprehensive introduction to differential geometry II, Publish or Perish Inc., Houston, 1979.
  • [14] S. Sternberg, Lectures on Differential Geometry, AMS Chelsea, 1983.
  • [15] C.M. Wood, An existence theorem for harmonic sections, Manuscr. Math. 68, 69–75, 1990.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mohamed Tahar Kadaoui Abbassi 0000-0001-7802-0624

Ibrahim Lakrini This is me 0000-0001-9863-8886

Publication Date December 14, 2021
Published in Issue Year 2021

Cite

APA Kadaoui Abbassi, M. T., & Lakrini, I. (2021). A note on induced connections. Hacettepe Journal of Mathematics and Statistics, 50(6), 1737-1744. https://doi.org/10.15672/hujms.829790
AMA Kadaoui Abbassi MT, Lakrini I. A note on induced connections. Hacettepe Journal of Mathematics and Statistics. December 2021;50(6):1737-1744. doi:10.15672/hujms.829790
Chicago Kadaoui Abbassi, Mohamed Tahar, and Ibrahim Lakrini. “A Note on Induced Connections”. Hacettepe Journal of Mathematics and Statistics 50, no. 6 (December 2021): 1737-44. https://doi.org/10.15672/hujms.829790.
EndNote Kadaoui Abbassi MT, Lakrini I (December 1, 2021) A note on induced connections. Hacettepe Journal of Mathematics and Statistics 50 6 1737–1744.
IEEE M. T. Kadaoui Abbassi and I. Lakrini, “A note on induced connections”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 6, pp. 1737–1744, 2021, doi: 10.15672/hujms.829790.
ISNAD Kadaoui Abbassi, Mohamed Tahar - Lakrini, Ibrahim. “A Note on Induced Connections”. Hacettepe Journal of Mathematics and Statistics 50/6 (December 2021), 1737-1744. https://doi.org/10.15672/hujms.829790.
JAMA Kadaoui Abbassi MT, Lakrini I. A note on induced connections. Hacettepe Journal of Mathematics and Statistics. 2021;50:1737–1744.
MLA Kadaoui Abbassi, Mohamed Tahar and Ibrahim Lakrini. “A Note on Induced Connections”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 6, 2021, pp. 1737-44, doi:10.15672/hujms.829790.
Vancouver Kadaoui Abbassi MT, Lakrini I. A note on induced connections. Hacettepe Journal of Mathematics and Statistics. 2021;50(6):1737-44.