Research Article
BibTex RIS Cite
Year 2021, , 1155 - 1168, 06.08.2021
https://doi.org/10.15672/hujms.832056

Abstract

References

  • [1] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.), 67 (109), 55–88, 1965, English translation: Amer. Math. Soc. Transl. 92, 1–39, 1970.
  • [2] A.V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys, 21 (4), 115–162, 1966.
  • [3] A.V. Arhangel’skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150, 79–90, 2005.
  • [4] A.V. Arhangel’skii, A generalization of Čech-complete spaces and Lindelöf $\Sigma$-spaces, Comment. Math. Univ. Carolin. 54 (2), 121–139, 2013.
  • [5] A.V. Arhangel’skii, Remainders of metrizable and close to metrizable spaces, Fund. Math. 220, 71–81, 2013.
  • [6] A.V. Arhangel’skii and M.M. Choban, Some generalizations of the concept of a $p$-space, Topology Appl. 158, 1381–1389, 2011.
  • [7] A.S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62, 289–300, 1934.
  • [8] M. Bonanzinga and M. Matveev, Some covering properties for $\Psi$-spaces, Mat. Vesnik, 61, 3–11, 2009.
  • [9] J. Casas-de la Rose, S.A. Garcia-Balan and P.J. Szeptycki, Some star and strongly star selection principles, Topology Appl. 258, 572–587, 2019.
  • [10] J. Cruz-Castillo, A. Ramírez-Páramo and J.F. Tenorio, Menger and Menger-type star selection principles for hit-and-miss topology, Topology Appl. 290, Art. ID 107574, 2021.
  • [11] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29, 93–106, 1988.
  • [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
  • [13] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
  • [14] K.P. Hart, J. Nagata and J.E. Vaughan, Encyclopedia of General Topology, Elsevier Science Publishers B. V., Amsterdam, 2004.
  • [15] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24, 401–421, 1926.
  • [16] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73, 241–266, 1996.
  • [17] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55, 421–431, 1999.
  • [18] Lj.D.R. Kočinac, The Pixley-Roy topology and selection principles, Questions Answers Gen. Topology, 19 (2), 219–225, 2001.
  • [19] Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (1), 82– 106, 2015.
  • [20] K. Menger, Einige Überdeckungssätze de Punktmengenlehre, Sitzungsber. Wien. Abt. 2a Math. Astronom. Phys. Meteorol. Mech. 133, 421–444, 1924.
  • [21] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble), 18 (2), 287–302, 1968.
  • [22] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105–106, 1954.
  • [23] K. Nagami, $\Sigma$-spaces, Fund. Math. 65, 169–192, 1969.
  • [24] C. Pixley and P. Roy, Uncompletable Moore spaces, in: Proceedings Auburn University Topology Conference, 75–85, 1969.
  • [25] M. Sakai, Star versions of the Menger property, Topology Appl. 176, 22–34, 2014.
  • [26] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69, 31–62, 1996.
  • [27] Y.-K. Song, On star-K-Menger spaces, Hacet. J. Math. Stat. 43 (5), 769–776, 2014.
  • [28] L.A. Steen and J.A. Seebach Jr., Counterexamples in Topology, Springer, New York, 1978.
  • [29] P. Szewczak and B. Tsaban, Products of Menger spaces: A combinatorial approach, Ann. Pure Appl. Logic, 168 (1), 1–18, 2017.
  • [30] B. Tsaban, Combinatorial aspects of selective star covering properties in $\Psi$-spaces, Topology Appl. 192, 198–207, 2015.
  • [31] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, Art. ID 107231, 2020.
  • [32] G. Whyburn and E. Duda, Dynamic Topology, Springer, New York, 1979.
  • [33] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.

On localization of the star-Menger selection principle

Year 2021, , 1155 - 1168, 06.08.2021
https://doi.org/10.15672/hujms.832056

Abstract

In this paper we primarily introduce the local version of star-Menger property, namely locally star-Menger property (a space with this property is called locally star-Menger) and present some important topological observations. Certain interactions between the new notion and star-Menger property are also observed. Some observations on effectively locally star-Menger Pixley-Roy hyperspaces (introduced here) are obtained. Preservation like properties under several topological operations are also interpreted carefully. Besides, several results on decomposition and remainder of locally star-Menger spaces are also presented.

References

  • [1] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.), 67 (109), 55–88, 1965, English translation: Amer. Math. Soc. Transl. 92, 1–39, 1970.
  • [2] A.V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys, 21 (4), 115–162, 1966.
  • [3] A.V. Arhangel’skii, Remainders in compactifications and generalized metrizability properties, Topology Appl. 150, 79–90, 2005.
  • [4] A.V. Arhangel’skii, A generalization of Čech-complete spaces and Lindelöf $\Sigma$-spaces, Comment. Math. Univ. Carolin. 54 (2), 121–139, 2013.
  • [5] A.V. Arhangel’skii, Remainders of metrizable and close to metrizable spaces, Fund. Math. 220, 71–81, 2013.
  • [6] A.V. Arhangel’skii and M.M. Choban, Some generalizations of the concept of a $p$-space, Topology Appl. 158, 1381–1389, 2011.
  • [7] A.S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62, 289–300, 1934.
  • [8] M. Bonanzinga and M. Matveev, Some covering properties for $\Psi$-spaces, Mat. Vesnik, 61, 3–11, 2009.
  • [9] J. Casas-de la Rose, S.A. Garcia-Balan and P.J. Szeptycki, Some star and strongly star selection principles, Topology Appl. 258, 572–587, 2019.
  • [10] J. Cruz-Castillo, A. Ramírez-Páramo and J.F. Tenorio, Menger and Menger-type star selection principles for hit-and-miss topology, Topology Appl. 290, Art. ID 107574, 2021.
  • [11] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29, 93–106, 1988.
  • [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
  • [13] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
  • [14] K.P. Hart, J. Nagata and J.E. Vaughan, Encyclopedia of General Topology, Elsevier Science Publishers B. V., Amsterdam, 2004.
  • [15] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24, 401–421, 1926.
  • [16] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73, 241–266, 1996.
  • [17] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55, 421–431, 1999.
  • [18] Lj.D.R. Kočinac, The Pixley-Roy topology and selection principles, Questions Answers Gen. Topology, 19 (2), 219–225, 2001.
  • [19] Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (1), 82– 106, 2015.
  • [20] K. Menger, Einige Überdeckungssätze de Punktmengenlehre, Sitzungsber. Wien. Abt. 2a Math. Astronom. Phys. Meteorol. Mech. 133, 421–444, 1924.
  • [21] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble), 18 (2), 287–302, 1968.
  • [22] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105–106, 1954.
  • [23] K. Nagami, $\Sigma$-spaces, Fund. Math. 65, 169–192, 1969.
  • [24] C. Pixley and P. Roy, Uncompletable Moore spaces, in: Proceedings Auburn University Topology Conference, 75–85, 1969.
  • [25] M. Sakai, Star versions of the Menger property, Topology Appl. 176, 22–34, 2014.
  • [26] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69, 31–62, 1996.
  • [27] Y.-K. Song, On star-K-Menger spaces, Hacet. J. Math. Stat. 43 (5), 769–776, 2014.
  • [28] L.A. Steen and J.A. Seebach Jr., Counterexamples in Topology, Springer, New York, 1978.
  • [29] P. Szewczak and B. Tsaban, Products of Menger spaces: A combinatorial approach, Ann. Pure Appl. Logic, 168 (1), 1–18, 2017.
  • [30] B. Tsaban, Combinatorial aspects of selective star covering properties in $\Psi$-spaces, Topology Appl. 192, 198–207, 2015.
  • [31] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, Art. ID 107231, 2020.
  • [32] G. Whyburn and E. Duda, Dynamic Topology, Springer, New York, 1979.
  • [33] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.
There are 33 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Debraj Chandra 0000-0001-5261-4598

Nur Alam This is me 0000-0001-8236-9984

Publication Date August 6, 2021
Published in Issue Year 2021

Cite

APA Chandra, D., & Alam, N. (2021). On localization of the star-Menger selection principle. Hacettepe Journal of Mathematics and Statistics, 50(4), 1155-1168. https://doi.org/10.15672/hujms.832056
AMA Chandra D, Alam N. On localization of the star-Menger selection principle. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1155-1168. doi:10.15672/hujms.832056
Chicago Chandra, Debraj, and Nur Alam. “On Localization of the Star-Menger Selection Principle”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1155-68. https://doi.org/10.15672/hujms.832056.
EndNote Chandra D, Alam N (August 1, 2021) On localization of the star-Menger selection principle. Hacettepe Journal of Mathematics and Statistics 50 4 1155–1168.
IEEE D. Chandra and N. Alam, “On localization of the star-Menger selection principle”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1155–1168, 2021, doi: 10.15672/hujms.832056.
ISNAD Chandra, Debraj - Alam, Nur. “On Localization of the Star-Menger Selection Principle”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1155-1168. https://doi.org/10.15672/hujms.832056.
JAMA Chandra D, Alam N. On localization of the star-Menger selection principle. Hacettepe Journal of Mathematics and Statistics. 2021;50:1155–1168.
MLA Chandra, Debraj and Nur Alam. “On Localization of the Star-Menger Selection Principle”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1155-68, doi:10.15672/hujms.832056.
Vancouver Chandra D, Alam N. On localization of the star-Menger selection principle. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1155-68.