Year 2021,
, 1155 - 1168, 06.08.2021
Debraj Chandra
,
Nur Alam
References
- [1] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact
spaces, Mat. Sb. (N.S.), 67 (109), 55–88, 1965, English translation: Amer. Math. Soc.
Transl. 92, 1–39, 1970.
- [2] A.V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys, 21 (4), 115–162,
1966.
- [3] A.V. Arhangel’skii, Remainders in compactifications and generalized metrizability
properties, Topology Appl. 150, 79–90, 2005.
- [4] A.V. Arhangel’skii, A generalization of Čech-complete spaces and Lindelöf $\Sigma$-spaces,
Comment. Math. Univ. Carolin. 54 (2), 121–139, 2013.
- [5] A.V. Arhangel’skii, Remainders of metrizable and close to metrizable spaces, Fund.
Math. 220, 71–81, 2013.
- [6] A.V. Arhangel’skii and M.M. Choban, Some generalizations of the concept of a $p$-space,
Topology Appl. 158, 1381–1389, 2011.
- [7] A.S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62, 289–300,
1934.
- [8] M. Bonanzinga and M. Matveev, Some covering properties for $\Psi$-spaces, Mat. Vesnik,
61, 3–11, 2009.
- [9] J. Casas-de la Rose, S.A. Garcia-Balan and P.J. Szeptycki, Some star and strongly
star selection principles, Topology Appl. 258, 572–587, 2019.
- [10] J. Cruz-Castillo, A. Ramírez-Páramo and J.F. Tenorio, Menger and Menger-type star
selection principles for hit-and-miss topology, Topology Appl. 290, Art. ID 107574,
2021.
- [11] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29, 93–106,
1988.
- [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [13] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton,
NJ, 1960.
- [14] K.P. Hart, J. Nagata and J.E. Vaughan, Encyclopedia of General Topology, Elsevier
Science Publishers B. V., Amsterdam, 2004.
- [15] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24,
401–421, 1926.
- [16] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open
covers (II), Topology Appl. 73, 241–266, 1996.
- [17] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55, 421–431,
1999.
- [18] Lj.D.R. Kočinac, The Pixley-Roy topology and selection principles, Questions Answers
Gen. Topology, 19 (2), 219–225, 2001.
- [19] Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (1), 82–
106, 2015.
- [20] K. Menger, Einige Überdeckungssätze de Punktmengenlehre, Sitzungsber. Wien. Abt.
2a Math. Astronom. Phys. Meteorol. Mech. 133, 421–444, 1924.
- [21] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst.
Fourier (Grenoble), 18 (2), 287–302, 1968.
- [22] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105–106, 1954.
- [23] K. Nagami, $\Sigma$-spaces, Fund. Math. 65, 169–192, 1969.
- [24] C. Pixley and P. Roy, Uncompletable Moore spaces, in: Proceedings Auburn University
Topology Conference, 75–85, 1969.
- [25] M. Sakai, Star versions of the Menger property, Topology Appl. 176, 22–34, 2014.
- [26] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69,
31–62, 1996.
- [27] Y.-K. Song, On star-K-Menger spaces, Hacet. J. Math. Stat. 43 (5), 769–776, 2014.
- [28] L.A. Steen and J.A. Seebach Jr., Counterexamples in Topology, Springer, New York,
1978.
- [29] P. Szewczak and B. Tsaban, Products of Menger spaces: A combinatorial approach,
Ann. Pure Appl. Logic, 168 (1), 1–18, 2017.
- [30] B. Tsaban, Combinatorial aspects of selective star covering properties in $\Psi$-spaces,
Topology Appl. 192, 198–207, 2015.
- [31] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, Art.
ID 107231, 2020.
- [32] G. Whyburn and E. Duda, Dynamic Topology, Springer, New York, 1979.
- [33] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.
On localization of the star-Menger selection principle
Year 2021,
, 1155 - 1168, 06.08.2021
Debraj Chandra
,
Nur Alam
Abstract
In this paper we primarily introduce the local version of star-Menger property, namely locally star-Menger property (a space with this property is called locally star-Menger) and present some important topological observations. Certain interactions between the new notion and star-Menger property are also observed. Some observations on effectively locally star-Menger Pixley-Roy hyperspaces (introduced here) are obtained. Preservation like properties under several topological operations are also interpreted carefully. Besides, several results on decomposition and remainder of locally star-Menger spaces are also presented.
References
- [1] A.V. Arhangel’skii, A class of spaces which contains all metric and all locally compact
spaces, Mat. Sb. (N.S.), 67 (109), 55–88, 1965, English translation: Amer. Math. Soc.
Transl. 92, 1–39, 1970.
- [2] A.V. Arhangel’skii, Mappings and spaces, Russian Math. Surveys, 21 (4), 115–162,
1966.
- [3] A.V. Arhangel’skii, Remainders in compactifications and generalized metrizability
properties, Topology Appl. 150, 79–90, 2005.
- [4] A.V. Arhangel’skii, A generalization of Čech-complete spaces and Lindelöf $\Sigma$-spaces,
Comment. Math. Univ. Carolin. 54 (2), 121–139, 2013.
- [5] A.V. Arhangel’skii, Remainders of metrizable and close to metrizable spaces, Fund.
Math. 220, 71–81, 2013.
- [6] A.V. Arhangel’skii and M.M. Choban, Some generalizations of the concept of a $p$-space,
Topology Appl. 158, 1381–1389, 2011.
- [7] A.S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62, 289–300,
1934.
- [8] M. Bonanzinga and M. Matveev, Some covering properties for $\Psi$-spaces, Mat. Vesnik,
61, 3–11, 2009.
- [9] J. Casas-de la Rose, S.A. Garcia-Balan and P.J. Szeptycki, Some star and strongly
star selection principles, Topology Appl. 258, 572–587, 2019.
- [10] J. Cruz-Castillo, A. Ramírez-Páramo and J.F. Tenorio, Menger and Menger-type star
selection principles for hit-and-miss topology, Topology Appl. 290, Art. ID 107574,
2021.
- [11] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topology Appl. 29, 93–106,
1988.
- [12] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [13] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton,
NJ, 1960.
- [14] K.P. Hart, J. Nagata and J.E. Vaughan, Encyclopedia of General Topology, Elsevier
Science Publishers B. V., Amsterdam, 2004.
- [15] W. Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24,
401–421, 1926.
- [16] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open
covers (II), Topology Appl. 73, 241–266, 1996.
- [17] Lj.D.R. Kočinac, Star-Menger and related spaces, Publ. Math. Debrecen, 55, 421–431,
1999.
- [18] Lj.D.R. Kočinac, The Pixley-Roy topology and selection principles, Questions Answers
Gen. Topology, 19 (2), 219–225, 2001.
- [19] Lj.D.R. Kočinac, Star selection principles: A survey, Khayyam J. Math. 1 (1), 82–
106, 2015.
- [20] K. Menger, Einige Überdeckungssätze de Punktmengenlehre, Sitzungsber. Wien. Abt.
2a Math. Astronom. Phys. Meteorol. Mech. 133, 421–444, 1924.
- [21] E.A. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst.
Fourier (Grenoble), 18 (2), 287–302, 1968.
- [22] S. Mrówka, On completely regular spaces, Fund. Math. 41, 105–106, 1954.
- [23] K. Nagami, $\Sigma$-spaces, Fund. Math. 65, 169–192, 1969.
- [24] C. Pixley and P. Roy, Uncompletable Moore spaces, in: Proceedings Auburn University
Topology Conference, 75–85, 1969.
- [25] M. Sakai, Star versions of the Menger property, Topology Appl. 176, 22–34, 2014.
- [26] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69,
31–62, 1996.
- [27] Y.-K. Song, On star-K-Menger spaces, Hacet. J. Math. Stat. 43 (5), 769–776, 2014.
- [28] L.A. Steen and J.A. Seebach Jr., Counterexamples in Topology, Springer, New York,
1978.
- [29] P. Szewczak and B. Tsaban, Products of Menger spaces: A combinatorial approach,
Ann. Pure Appl. Logic, 168 (1), 1–18, 2017.
- [30] B. Tsaban, Combinatorial aspects of selective star covering properties in $\Psi$-spaces,
Topology Appl. 192, 198–207, 2015.
- [31] H. Wang and W. He, On remainders of locally s-spaces, Topology Appl. 278, Art.
ID 107231, 2020.
- [32] G. Whyburn and E. Duda, Dynamic Topology, Springer, New York, 1979.
- [33] S. Willard, General Topology, Addison Wesley Publishing Co., 1970.