Research Article
BibTex RIS Cite

Product of matrix valued truncated Toeplitz operators

Year 2022, , 700 - 711, 01.06.2022
https://doi.org/10.15672/hujms.883318

Abstract

Let $A_\Phi$ be a matrix valued truncated Toeplitz operator -- the compression of multiplication operator to the vector valued model space $H^2(E)\ominus \Theta H^2(E)$, where $\Theta$ is a matrix valued non constant inner function. Under supplementary assumptions, we find necessary and sufficient condition that the product $A_\Phi A_\Psi$ is itself a matrix valued truncated Toeplitz operator.

References

  • [1] A. Baranov, R. Bessonov and V. Kapustin, Symbols of truncated Toeplitz operators, J. Funct. Anal. 261, 3437–3456, 2011.
  • [2] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi and D. Timotin, Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal. 259 , 2673–2701, 2010.
  • [3] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 , 89-102, 1963/1964.
  • [4] I. Chalendar and D. Timotin, Commutation relations for truncated Toeplitz operators, Oper. Matrices, 3 , 877–888, 2014.
  • [5] S.R. Garcia, J. Mashreghi and W.T. Ross, Introduction to Model Spaces and their Operators, Cambridge University Press., 2016.
  • [6] S.R. Garcia and W.T. Ross, Recent progress on truncated Toeplitz operators, Blaschke products and their applications, Fields Inst. Commun. 65, 275–319, Springer New York, 2013.
  • [7] M.A. Khan, A family of maximal algebras of block Toeplitz matrices, An. St. Univ. Ovidius, Constanta 3, 127-142, 2018.
  • [8] M.A. Khan and D. Timotin, Algebras of block Toeplitz matrices with commuting entries, Linear and Multilinear Algebra 69, 2702–2716, 2019.
  • [9] R. Khan and D. Timotin, Matrix valued truncated Toeplitz operators: Basic properties, Complex Anal. Oper. Theory, 12, 997–1014, 2018.
  • [10] B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic Analysis of Operators on Hilbert Space. Revised and enlarged edition. Universitext, Springer, New York, 2010.
  • [11] D. Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1, 491–526, 2007.
  • [12] N. Sedlock, Algebras of truncated Toeplitz operators , Oper. Matrices, 5, 309–326, 2011.
  • [13] T. Shalom, On algebras of Toeplitz matrices, Linear Algebra Appl. 96, 211–226, 1987.
Year 2022, , 700 - 711, 01.06.2022
https://doi.org/10.15672/hujms.883318

Abstract

References

  • [1] A. Baranov, R. Bessonov and V. Kapustin, Symbols of truncated Toeplitz operators, J. Funct. Anal. 261, 3437–3456, 2011.
  • [2] A. Baranov, I. Chalendar, E. Fricain, J. Mashreghi and D. Timotin, Bounded symbols and reproducing kernel thesis for truncated Toeplitz operators, J. Funct. Anal. 259 , 2673–2701, 2010.
  • [3] A. Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 , 89-102, 1963/1964.
  • [4] I. Chalendar and D. Timotin, Commutation relations for truncated Toeplitz operators, Oper. Matrices, 3 , 877–888, 2014.
  • [5] S.R. Garcia, J. Mashreghi and W.T. Ross, Introduction to Model Spaces and their Operators, Cambridge University Press., 2016.
  • [6] S.R. Garcia and W.T. Ross, Recent progress on truncated Toeplitz operators, Blaschke products and their applications, Fields Inst. Commun. 65, 275–319, Springer New York, 2013.
  • [7] M.A. Khan, A family of maximal algebras of block Toeplitz matrices, An. St. Univ. Ovidius, Constanta 3, 127-142, 2018.
  • [8] M.A. Khan and D. Timotin, Algebras of block Toeplitz matrices with commuting entries, Linear and Multilinear Algebra 69, 2702–2716, 2019.
  • [9] R. Khan and D. Timotin, Matrix valued truncated Toeplitz operators: Basic properties, Complex Anal. Oper. Theory, 12, 997–1014, 2018.
  • [10] B. Sz.-Nagy, C. Foias, H. Bercovici and L. Kérchy, Harmonic Analysis of Operators on Hilbert Space. Revised and enlarged edition. Universitext, Springer, New York, 2010.
  • [11] D. Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1, 491–526, 2007.
  • [12] N. Sedlock, Algebras of truncated Toeplitz operators , Oper. Matrices, 5, 309–326, 2011.
  • [13] T. Shalom, On algebras of Toeplitz matrices, Linear Algebra Appl. 96, 211–226, 1987.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Muhammad Ahsan Khan 0000-0002-4008-9041

Publication Date June 1, 2022
Published in Issue Year 2022

Cite

APA Khan, M. A. (2022). Product of matrix valued truncated Toeplitz operators. Hacettepe Journal of Mathematics and Statistics, 51(3), 700-711. https://doi.org/10.15672/hujms.883318
AMA Khan MA. Product of matrix valued truncated Toeplitz operators. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):700-711. doi:10.15672/hujms.883318
Chicago Khan, Muhammad Ahsan. “Product of Matrix Valued Truncated Toeplitz Operators”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 700-711. https://doi.org/10.15672/hujms.883318.
EndNote Khan MA (June 1, 2022) Product of matrix valued truncated Toeplitz operators. Hacettepe Journal of Mathematics and Statistics 51 3 700–711.
IEEE M. A. Khan, “Product of matrix valued truncated Toeplitz operators”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 700–711, 2022, doi: 10.15672/hujms.883318.
ISNAD Khan, Muhammad Ahsan. “Product of Matrix Valued Truncated Toeplitz Operators”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 700-711. https://doi.org/10.15672/hujms.883318.
JAMA Khan MA. Product of matrix valued truncated Toeplitz operators. Hacettepe Journal of Mathematics and Statistics. 2022;51:700–711.
MLA Khan, Muhammad Ahsan. “Product of Matrix Valued Truncated Toeplitz Operators”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 700-11, doi:10.15672/hujms.883318.
Vancouver Khan MA. Product of matrix valued truncated Toeplitz operators. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):700-11.