Horizontal lifts of projectable linear connection to semi-tangent bundle
Year 2021,
, 1709 - 1721, 14.12.2021
Furkan Yıldırım
Abstract
The main aim of this article is to study the horizontal lifts of projectable linear connection in the semi-tangent bundle tM. The properties of complete and horizontal lifts of projectable linear connection for semi-tangent bundle tM are also investigated. Finally, we examine the infinitesimal linear transformation in the semi-tangent bundle with respect to the horizontal lift of a projectable linear connection.
Supporting Institution
Tübitak
Project Number
(TBAG-3001, MFAG-118F176).
Thanks
The author is supported by the Scientific and Technological Research Council of Turkey (TBAG-3001, MFAG-118F176).
References
- [1] A. Bednarska, On lifts of projectable-projectable classical linear connections to the
cotangent bundle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (1), 1-10, 2013.
- [2] N. Cengiz and A.A. Salimov, Complete lifts of derivations to tensor bundles, Bol. Soc.
Mat. Mex. 8 (3), 75-82, 2002.
- [3] D. Husemoller, Fibre Bundles, Springer, New York, 1994.
- [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley-Inter Sci-
ence Publications, New York, 1963.
- [5] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press,
Princeton, 1989.
- [6] N.M. Ostianu, Step-fibred spaces, Tr. Geom. Sem. 5, 259-309, 1974.
- [7] L.S. Pontryagin, Characteristic cycles on differentiable manifolds, Amer. Math. Soc.
Translation, 32, 1950.
- [8] W.A. Poor, Differential Geometric Structures, New York, McGraw-Hill, 1981.
- [9] A.A. Salimov and E. Kadıoğlu, Lifts of Derivations to the Semitangent Bundle, Turk
J. Math. 24, 259-266, 2000.
- [10] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press, Princeton,
1951.
- [11] N. Tanaka, On infinitesimal automorphisms of Siegel domains, Proc. Japan Acad.
Ser. A Math. Sci. 45 (5), 335-338, 1969.
- [12] V.V. Vishnevskii, Integrable affinor structures and their plural interpretations, J.
Math. Sci. (N.Y.) 108 (2), 151-187, 2002.
- [13] V.V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras, Kazan
Gos. Univ. Kazan, 1985 (in Russian).
- [14] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New
York, 1973.
- [15] F. Yıldırım, On a special class of semi-cotangent bundle, Proc. Inst. Math. Mech.
Natl. Acad. Sci. Azerb. 41 (1), 25-38, 2015.
- [16] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J.
Math. 38, 325-339, 2014.
Year 2021,
, 1709 - 1721, 14.12.2021
Furkan Yıldırım
Project Number
(TBAG-3001, MFAG-118F176).
References
- [1] A. Bednarska, On lifts of projectable-projectable classical linear connections to the
cotangent bundle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (1), 1-10, 2013.
- [2] N. Cengiz and A.A. Salimov, Complete lifts of derivations to tensor bundles, Bol. Soc.
Mat. Mex. 8 (3), 75-82, 2002.
- [3] D. Husemoller, Fibre Bundles, Springer, New York, 1994.
- [4] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Wiley-Inter Sci-
ence Publications, New York, 1963.
- [5] H.B. Lawson and M.L. Michelsohn, Spin Geometry, Princeton University Press,
Princeton, 1989.
- [6] N.M. Ostianu, Step-fibred spaces, Tr. Geom. Sem. 5, 259-309, 1974.
- [7] L.S. Pontryagin, Characteristic cycles on differentiable manifolds, Amer. Math. Soc.
Translation, 32, 1950.
- [8] W.A. Poor, Differential Geometric Structures, New York, McGraw-Hill, 1981.
- [9] A.A. Salimov and E. Kadıoğlu, Lifts of Derivations to the Semitangent Bundle, Turk
J. Math. 24, 259-266, 2000.
- [10] N. Steenrod, The Topology of Fibre Bundles. Princeton University Press, Princeton,
1951.
- [11] N. Tanaka, On infinitesimal automorphisms of Siegel domains, Proc. Japan Acad.
Ser. A Math. Sci. 45 (5), 335-338, 1969.
- [12] V.V. Vishnevskii, Integrable affinor structures and their plural interpretations, J.
Math. Sci. (N.Y.) 108 (2), 151-187, 2002.
- [13] V.V. Vishnevskii, A.P. Shirokov and V.V. Shurygin, Spaces over Algebras, Kazan
Gos. Univ. Kazan, 1985 (in Russian).
- [14] K. Yano and S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New
York, 1973.
- [15] F. Yıldırım, On a special class of semi-cotangent bundle, Proc. Inst. Math. Mech.
Natl. Acad. Sci. Azerb. 41 (1), 25-38, 2015.
- [16] F. Yıldırım and A. Salimov, Semi-cotangent bundle and problems of lifts, Turk J.
Math. 38, 325-339, 2014.