Year 2022,
, 218 - 227, 14.02.2022
José Carlos Rosales
,
Manuel B. Branco
,
M. C. Faria
References
- [1] V. Barucci, D.E. Dobbs and M. Fontana, Maximality Properties in Numerical Semigroups
and Applications to One-Dimensional Analytically Irreducible Local Domains,
Memoirs of the Amer. Math. Soc. 598, 1997.
- [2] M.B. Branco, M.C. Faria and J.C. Rosales, Positioned numerical semigroups, Quaest.
Math. 44, 679-691, 2021.
- [3] M.B. Branco, M.C. Faria and J.C. Rosales, Almost-positioned numerical semigroups,
Results Math. 76, 1-14, 2021.
- [4] M.B. Branco, I. Ojeda and J.C. Rosales, The set of numerical semigroups of a given
multiplicity and Frobenius number, Port. Math. 78, 147-167, 2021.
- [5] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup
Forum 35, 63-83, 1987.
- [6] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer.
Math. Soc. 25, 748-751, 1973.
- [7] J.C. Rosales, On symmetric numerical semigroups, J. Algebra 182, 422-434, 1996.
- [8] J.C. Rosales, Adding or removing on element from a Pseudo- symmetric numerical
semigroup, Boll. Unione Mat. Ital. 9, 681-696, 2006.
- [9] J.C. Rosales, Numerical semigroups that differ from a Symmetric numerical semigroups
in one element, Algebra Colloq. 15, 23-32, 2008.
- [10] J.C. Rosales and M.B. Branco, Irreducible numerical semigroups, Pacific J. Math.
209, 131-143, 2003.
- [11] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups, Springer Science &
Business Media, 2009.
Positioned numerical semigroups with maximal gender as function of multiplicity and Frobenius number
Year 2022,
, 218 - 227, 14.02.2022
José Carlos Rosales
,
Manuel B. Branco
,
M. C. Faria
Abstract
A $C$-semigroup (respectively a $D$-semigroup) is a positioned numerical semigroup $S$ such that $\rm{g}(S)=\frac{\rm{F}(S)+\rm{m}(S)-1}{2}$ (respectively $\rm{g}(S)=\frac{\rm{F}(S)+\rm{m}(S)-2}{2}$). In this paper we study these semigroups giving formulas for the Frobenius number, pseudo-Frobenius number, and type. Furthermore, we give algorithms for computing the whole set of $C$-semigroups and $D$-semigroups.
References
- [1] V. Barucci, D.E. Dobbs and M. Fontana, Maximality Properties in Numerical Semigroups
and Applications to One-Dimensional Analytically Irreducible Local Domains,
Memoirs of the Amer. Math. Soc. 598, 1997.
- [2] M.B. Branco, M.C. Faria and J.C. Rosales, Positioned numerical semigroups, Quaest.
Math. 44, 679-691, 2021.
- [3] M.B. Branco, M.C. Faria and J.C. Rosales, Almost-positioned numerical semigroups,
Results Math. 76, 1-14, 2021.
- [4] M.B. Branco, I. Ojeda and J.C. Rosales, The set of numerical semigroups of a given
multiplicity and Frobenius number, Port. Math. 78, 147-167, 2021.
- [5] R. Fröberg, C. Gottlieb and R. Häggkvist, On numerical semigroups, Semigroup
Forum 35, 63-83, 1987.
- [6] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer.
Math. Soc. 25, 748-751, 1973.
- [7] J.C. Rosales, On symmetric numerical semigroups, J. Algebra 182, 422-434, 1996.
- [8] J.C. Rosales, Adding or removing on element from a Pseudo- symmetric numerical
semigroup, Boll. Unione Mat. Ital. 9, 681-696, 2006.
- [9] J.C. Rosales, Numerical semigroups that differ from a Symmetric numerical semigroups
in one element, Algebra Colloq. 15, 23-32, 2008.
- [10] J.C. Rosales and M.B. Branco, Irreducible numerical semigroups, Pacific J. Math.
209, 131-143, 2003.
- [11] J.C. Rosales and P.A. García-Sánchez, Numerical semigroups, Springer Science &
Business Media, 2009.