In this paper we initiate a new approach consisting to characterize the commutativity of a quotient ring $R/P$ by endomorphisms of $R$ satisfying some algebraic identities involving the prime ideal $P.$ Some well-known results concerning the commutativity of prime (semi-prime) rings have been improved.
[1] C.M. Anwar and A.B. Thaheem, Centralizing mappings and derivations on semiprime
rings, Demonstratio Math. 37(2), 285-292, 2004.
[2] H.E. Bell and M.N. Daif, On commutativity and strong commutativity-preserving
maps, Canad. Math. Bull. 37(4), 443-447, 1994.
[3] I.N. Herstein, A note on derivations, Canad. Math. Bull. 21, 369-370, 1978.
[4] S. Huang, O. Golbas, and E. Koc, On centralizing and strong commutativity preserving
maps of semiprime rings, Ukrainian Math. J. 67(2), 323-331, 2015.
[5] C. Lanski, Differential identities, Lie ideals and Posner’s theorems, Pacific J. Math.
134(2), 275-297, 1988.
[6] A. Mamouni, L. Oukhtite and B. Nejjar, Differential identities on prime rings with
involution, J. Algebra Appl. 17(9), 1850163, 2018.
[7] A. Mamouni, L. Oukhtite and B. Nejjar, On ∗-semiderivations and ∗-generalized
semiderivations, J. Algebra Appl. 16(4), 1750075, 2017.
[8] A. Mamouni, L. Oukhtite and M. Zerra, On derivations involving prime ideals and
commutativity in rings, São Paulo J. Math. Sci. 14(2), 675-688, 2020.
[9] A. Mamouni, L. Oukhtite and M. Zerra, Prime ideals and generalized derivations with
central values on rings, Rend. Circ. Mat. Palermo (2), 70(3), 1645, 2021.
[10] J. Mayne, Centralizing automorphisms of prime rings, Can. Math. Bull. 19(1), 113-
115, 1976.
[11] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings
with involution, Comm. Algebra 45(2), 698-702, 2017.
[12] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals
of rings with involution, Turkish J. Math. 38(2), 225-232, 2014.
[13] L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with
differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (4), 447-
457, 2013.
[14] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
[1] C.M. Anwar and A.B. Thaheem, Centralizing mappings and derivations on semiprime
rings, Demonstratio Math. 37(2), 285-292, 2004.
[2] H.E. Bell and M.N. Daif, On commutativity and strong commutativity-preserving
maps, Canad. Math. Bull. 37(4), 443-447, 1994.
[3] I.N. Herstein, A note on derivations, Canad. Math. Bull. 21, 369-370, 1978.
[4] S. Huang, O. Golbas, and E. Koc, On centralizing and strong commutativity preserving
maps of semiprime rings, Ukrainian Math. J. 67(2), 323-331, 2015.
[5] C. Lanski, Differential identities, Lie ideals and Posner’s theorems, Pacific J. Math.
134(2), 275-297, 1988.
[6] A. Mamouni, L. Oukhtite and B. Nejjar, Differential identities on prime rings with
involution, J. Algebra Appl. 17(9), 1850163, 2018.
[7] A. Mamouni, L. Oukhtite and B. Nejjar, On ∗-semiderivations and ∗-generalized
semiderivations, J. Algebra Appl. 16(4), 1750075, 2017.
[8] A. Mamouni, L. Oukhtite and M. Zerra, On derivations involving prime ideals and
commutativity in rings, São Paulo J. Math. Sci. 14(2), 675-688, 2020.
[9] A. Mamouni, L. Oukhtite and M. Zerra, Prime ideals and generalized derivations with
central values on rings, Rend. Circ. Mat. Palermo (2), 70(3), 1645, 2021.
[10] J. Mayne, Centralizing automorphisms of prime rings, Can. Math. Bull. 19(1), 113-
115, 1976.
[11] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings
with involution, Comm. Algebra 45(2), 698-702, 2017.
[12] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals
of rings with involution, Turkish J. Math. 38(2), 225-232, 2014.
[13] L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with
differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (4), 447-
457, 2013.
[14] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
Oukhtite, L., Mamounı, A., & Zerra, M. (2022). Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics, 51(5), 1280-1287. https://doi.org/10.15672/hujms.918743
AMA
Oukhtite L, Mamounı A, Zerra M. Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics. October 2022;51(5):1280-1287. doi:10.15672/hujms.918743
Chicago
Oukhtite, L., Abdellah Mamounı, and Mohammed Zerra. “Some Commutativity Criteria Involving Endomorphism Conditions on Prime Ideals”. Hacettepe Journal of Mathematics and Statistics 51, no. 5 (October 2022): 1280-87. https://doi.org/10.15672/hujms.918743.
EndNote
Oukhtite L, Mamounı A, Zerra M (October 1, 2022) Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics 51 5 1280–1287.
IEEE
L. Oukhtite, A. Mamounı, and M. Zerra, “Some commutativity criteria involving endomorphism conditions on prime ideals”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, pp. 1280–1287, 2022, doi: 10.15672/hujms.918743.
ISNAD
Oukhtite, L. et al. “Some Commutativity Criteria Involving Endomorphism Conditions on Prime Ideals”. Hacettepe Journal of Mathematics and Statistics 51/5 (October 2022), 1280-1287. https://doi.org/10.15672/hujms.918743.
JAMA
Oukhtite L, Mamounı A, Zerra M. Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics. 2022;51:1280–1287.
MLA
Oukhtite, L. et al. “Some Commutativity Criteria Involving Endomorphism Conditions on Prime Ideals”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, 2022, pp. 1280-7, doi:10.15672/hujms.918743.
Vancouver
Oukhtite L, Mamounı A, Zerra M. Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics. 2022;51(5):1280-7.