Research Article
BibTex RIS Cite

Some commutativity criteria involving endomorphism conditions on prime ideals

Year 2022, Volume: 51 Issue: 5, 1280 - 1287, 01.10.2022
https://doi.org/10.15672/hujms.918743

Abstract

In this paper we initiate a new approach consisting to characterize the commutativity of a quotient ring $R/P$ by endomorphisms of $R$ satisfying some algebraic identities involving the prime ideal $P.$ Some well-known results concerning the commutativity of prime (semi-prime) rings have been improved.

References

  • [1] C.M. Anwar and A.B. Thaheem, Centralizing mappings and derivations on semiprime rings, Demonstratio Math. 37(2), 285-292, 2004.
  • [2] H.E. Bell and M.N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37(4), 443-447, 1994.
  • [3] I.N. Herstein, A note on derivations, Canad. Math. Bull. 21, 369-370, 1978.
  • [4] S. Huang, O. Golbas, and E. Koc, On centralizing and strong commutativity preserving maps of semiprime rings, Ukrainian Math. J. 67(2), 323-331, 2015.
  • [5] C. Lanski, Differential identities, Lie ideals and Posner’s theorems, Pacific J. Math. 134(2), 275-297, 1988.
  • [6] A. Mamouni, L. Oukhtite and B. Nejjar, Differential identities on prime rings with involution, J. Algebra Appl. 17(9), 1850163, 2018.
  • [7] A. Mamouni, L. Oukhtite and B. Nejjar, On ∗-semiderivations and ∗-generalized semiderivations, J. Algebra Appl. 16(4), 1750075, 2017.
  • [8] A. Mamouni, L. Oukhtite and M. Zerra, On derivations involving prime ideals and commutativity in rings, São Paulo J. Math. Sci. 14(2), 675-688, 2020.
  • [9] A. Mamouni, L. Oukhtite and M. Zerra, Prime ideals and generalized derivations with central values on rings, Rend. Circ. Mat. Palermo (2), 70(3), 1645, 2021.
  • [10] J. Mayne, Centralizing automorphisms of prime rings, Can. Math. Bull. 19(1), 113- 115, 1976.
  • [11] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45(2), 698-702, 2017.
  • [12] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38(2), 225-232, 2014.
  • [13] L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (4), 447- 457, 2013.
  • [14] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.

Year 2022, Volume: 51 Issue: 5, 1280 - 1287, 01.10.2022
https://doi.org/10.15672/hujms.918743

Abstract

References

  • [1] C.M. Anwar and A.B. Thaheem, Centralizing mappings and derivations on semiprime rings, Demonstratio Math. 37(2), 285-292, 2004.
  • [2] H.E. Bell and M.N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37(4), 443-447, 1994.
  • [3] I.N. Herstein, A note on derivations, Canad. Math. Bull. 21, 369-370, 1978.
  • [4] S. Huang, O. Golbas, and E. Koc, On centralizing and strong commutativity preserving maps of semiprime rings, Ukrainian Math. J. 67(2), 323-331, 2015.
  • [5] C. Lanski, Differential identities, Lie ideals and Posner’s theorems, Pacific J. Math. 134(2), 275-297, 1988.
  • [6] A. Mamouni, L. Oukhtite and B. Nejjar, Differential identities on prime rings with involution, J. Algebra Appl. 17(9), 1850163, 2018.
  • [7] A. Mamouni, L. Oukhtite and B. Nejjar, On ∗-semiderivations and ∗-generalized semiderivations, J. Algebra Appl. 16(4), 1750075, 2017.
  • [8] A. Mamouni, L. Oukhtite and M. Zerra, On derivations involving prime ideals and commutativity in rings, São Paulo J. Math. Sci. 14(2), 675-688, 2020.
  • [9] A. Mamouni, L. Oukhtite and M. Zerra, Prime ideals and generalized derivations with central values on rings, Rend. Circ. Mat. Palermo (2), 70(3), 1645, 2021.
  • [10] J. Mayne, Centralizing automorphisms of prime rings, Can. Math. Bull. 19(1), 113- 115, 1976.
  • [11] B. Nejjar, A. Kacha, A. Mamouni and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45(2), 698-702, 2017.
  • [12] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings with involution, Turkish J. Math. 38(2), 225-232, 2014.
  • [13] L. Oukhtite, A. Mamouni and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (4), 447- 457, 2013.
  • [14] E.C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8, 1093-1100, 1957.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

L. Oukhtite 0000-0003-4408-4421

Abdellah Mamounı 0000-0001-7994-1564

Mohammed Zerra 0000-0003-2711-2857

Publication Date October 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 5

Cite

APA Oukhtite, L., Mamounı, A., & Zerra, M. (2022). Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics, 51(5), 1280-1287. https://doi.org/10.15672/hujms.918743
AMA 1.Oukhtite L, Mamounı A, Zerra M. Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics. 2022;51(5):1280-1287. doi:10.15672/hujms.918743
Chicago Oukhtite, L., Abdellah Mamounı, and Mohammed Zerra. 2022. “Some Commutativity Criteria Involving Endomorphism Conditions on Prime Ideals”. Hacettepe Journal of Mathematics and Statistics 51 (5): 1280-87. https://doi.org/10.15672/hujms.918743.
EndNote Oukhtite L, Mamounı A, Zerra M (October 1, 2022) Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics 51 5 1280–1287.
IEEE [1]L. Oukhtite, A. Mamounı, and M. Zerra, “Some commutativity criteria involving endomorphism conditions on prime ideals”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, pp. 1280–1287, Oct. 2022, doi: 10.15672/hujms.918743.
ISNAD Oukhtite, L. - Mamounı, Abdellah - Zerra, Mohammed. “Some Commutativity Criteria Involving Endomorphism Conditions on Prime Ideals”. Hacettepe Journal of Mathematics and Statistics 51/5 (October 1, 2022): 1280-1287. https://doi.org/10.15672/hujms.918743.
JAMA 1.Oukhtite L, Mamounı A, Zerra M. Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics. 2022;51:1280–1287.
MLA Oukhtite, L., et al. “Some Commutativity Criteria Involving Endomorphism Conditions on Prime Ideals”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 5, Oct. 2022, pp. 1280-7, doi:10.15672/hujms.918743.
Vancouver 1.Oukhtite L, Mamounı A, Zerra M. Some commutativity criteria involving endomorphism conditions on prime ideals. Hacettepe Journal of Mathematics and Statistics [Internet]. 2022 Oct. 1;51(5):1280-7. Available from: https://izlik.org/JA84DT85UE