Research Article
BibTex RIS Cite
Year 2022, , 74 - 82, 14.02.2022
https://doi.org/10.15672/hujms.944131

Abstract

References

  • [1] J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, A final result on the oscillation of solutions of the linear discrete delayed equation $\Delta x(n)=-p(n)x(n-k)$ with a positive coefficient, Abstr. Appl. Anal. 2011, Art. ID 586328, 2011.
  • [2] L. Berezansky and E. Braverman, On existence of positive solutions for linear differ- ence equations with several delays, Adv. Dyn. Syst. Appl. 1 (1), 29–47, 2006.
  • [3] M. Bohner, B. Karpuz and Ö. Öcalan, Iterated oscillation criteria for delay dynamic equations of first order, Adv. Difference Equ. 2008, Art. ID 458687, 2008.
  • [4] G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (4), 994– 1005, 2008.
  • [5] G. E. Chatzarakis and I. P. Stavroulakis, Oscillations of first order linear delay dif- ference equations, Aust. J. Math. Anal. Appl. 3 (1), Art. 14, 11, 2006.
  • [6] M.-P. Chen and J. S. Yu, Oscillations of delay difference equations with variable coef- ficients, In Proceedings of the First International Conference on Difference Equations (San Antonio, TX, 1994), pp. 105–114, Gordon and Breach, 1995.
  • [7] Y. Domshlak, Discrete version of Sturmian comparison theorem for non-symmetric equations, Doklady Azerb. Acad. Sci. 37, 12–15, (1981).
  • [8] L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2 (3), 300–309, 1989.
  • [9] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap- plications, Oxford, The Clarendon Press, 1991.
  • [10] B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ. Appl. 23 (12), 1929–1942, 2017.
  • [11] G. Ladas, Recent developments in the oscillation of delay difference equations, In Differential equations (Colorado Springs, CO, 1989) Lecture Notes in Pure and Appl. Math. 127, pp. 321–332, Dekker, 1991.
  • [12] G. Ladas, Ch. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation 2 (2), 101–111, 1989.
  • [13] V. Malygina and K. Chudinov, Explicit conditions for the nonoscillation of difference equations with several delays, Electron. J. Qual. Theory Differ. Equ. 2013 (46), 1-12, 2013.
  • [14] J. Tabor, Oscillation of linear difference equations in Banach spaces, J. Differential Equations 192 (1), 170–187, 2003.
  • [15] X. H. Tang and J. S. Yu, Oscillation of delay difference equation, Comput. Math. Appl. 37 (7), 11–20, 1999.
  • [16] X. H. Tang and J. S. Yu, A further result on the oscillation of delay difference equa- tions, Comput. Math. Appl. 38 (11-12), 229–237, 1999.
  • [17] J. S. Yu, B. G. Zhang and Z. C. Wang, Oscillation of delay difference equations, Appl. Anal. 53 (1-2), 117–124, 1994.

An iterative oscillation test for delay difference equations

Year 2022, , 74 - 82, 14.02.2022
https://doi.org/10.15672/hujms.944131

Abstract

In this paper, we advance a recent oscillation test for the oscillation of the delay difference equation
\begin{equation}
x(n+1)-x(n)+p(n)x(n-\tau)=0\quad\text{for}\ n=0,1,\cdots,\nonumber
\end{equation}
where $\{p(n)\}$ is a nonnegative sequence of reals
and $\tau$ is a nonnegative integer.
We also present a numerical example emphasizing the significance of our new result in the literature of delay difference equations.

References

  • [1] J. Baštinec, L. Berezansky, J. Diblík and Z. Šmarda, A final result on the oscillation of solutions of the linear discrete delayed equation $\Delta x(n)=-p(n)x(n-k)$ with a positive coefficient, Abstr. Appl. Anal. 2011, Art. ID 586328, 2011.
  • [2] L. Berezansky and E. Braverman, On existence of positive solutions for linear differ- ence equations with several delays, Adv. Dyn. Syst. Appl. 1 (1), 29–47, 2006.
  • [3] M. Bohner, B. Karpuz and Ö. Öcalan, Iterated oscillation criteria for delay dynamic equations of first order, Adv. Difference Equ. 2008, Art. ID 458687, 2008.
  • [4] G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (4), 994– 1005, 2008.
  • [5] G. E. Chatzarakis and I. P. Stavroulakis, Oscillations of first order linear delay dif- ference equations, Aust. J. Math. Anal. Appl. 3 (1), Art. 14, 11, 2006.
  • [6] M.-P. Chen and J. S. Yu, Oscillations of delay difference equations with variable coef- ficients, In Proceedings of the First International Conference on Difference Equations (San Antonio, TX, 1994), pp. 105–114, Gordon and Breach, 1995.
  • [7] Y. Domshlak, Discrete version of Sturmian comparison theorem for non-symmetric equations, Doklady Azerb. Acad. Sci. 37, 12–15, (1981).
  • [8] L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2 (3), 300–309, 1989.
  • [9] I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Ap- plications, Oxford, The Clarendon Press, 1991.
  • [10] B. Karpuz, Sharp oscillation and nonoscillation tests for linear difference equations, J. Difference Equ. Appl. 23 (12), 1929–1942, 2017.
  • [11] G. Ladas, Recent developments in the oscillation of delay difference equations, In Differential equations (Colorado Springs, CO, 1989) Lecture Notes in Pure and Appl. Math. 127, pp. 321–332, Dekker, 1991.
  • [12] G. Ladas, Ch. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation 2 (2), 101–111, 1989.
  • [13] V. Malygina and K. Chudinov, Explicit conditions for the nonoscillation of difference equations with several delays, Electron. J. Qual. Theory Differ. Equ. 2013 (46), 1-12, 2013.
  • [14] J. Tabor, Oscillation of linear difference equations in Banach spaces, J. Differential Equations 192 (1), 170–187, 2003.
  • [15] X. H. Tang and J. S. Yu, Oscillation of delay difference equation, Comput. Math. Appl. 37 (7), 11–20, 1999.
  • [16] X. H. Tang and J. S. Yu, A further result on the oscillation of delay difference equa- tions, Comput. Math. Appl. 38 (11-12), 229–237, 1999.
  • [17] J. S. Yu, B. G. Zhang and Z. C. Wang, Oscillation of delay difference equations, Appl. Anal. 53 (1-2), 117–124, 1994.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Başak Karpuz 0000-0002-0242-972X

Zehra Ozsever This is me 0000-0001-7451-4520

Publication Date February 14, 2022
Published in Issue Year 2022

Cite

APA Karpuz, B., & Ozsever, Z. (2022). An iterative oscillation test for delay difference equations. Hacettepe Journal of Mathematics and Statistics, 51(1), 74-82. https://doi.org/10.15672/hujms.944131
AMA Karpuz B, Ozsever Z. An iterative oscillation test for delay difference equations. Hacettepe Journal of Mathematics and Statistics. February 2022;51(1):74-82. doi:10.15672/hujms.944131
Chicago Karpuz, Başak, and Zehra Ozsever. “An Iterative Oscillation Test for Delay Difference Equations”. Hacettepe Journal of Mathematics and Statistics 51, no. 1 (February 2022): 74-82. https://doi.org/10.15672/hujms.944131.
EndNote Karpuz B, Ozsever Z (February 1, 2022) An iterative oscillation test for delay difference equations. Hacettepe Journal of Mathematics and Statistics 51 1 74–82.
IEEE B. Karpuz and Z. Ozsever, “An iterative oscillation test for delay difference equations”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 1, pp. 74–82, 2022, doi: 10.15672/hujms.944131.
ISNAD Karpuz, Başak - Ozsever, Zehra. “An Iterative Oscillation Test for Delay Difference Equations”. Hacettepe Journal of Mathematics and Statistics 51/1 (February 2022), 74-82. https://doi.org/10.15672/hujms.944131.
JAMA Karpuz B, Ozsever Z. An iterative oscillation test for delay difference equations. Hacettepe Journal of Mathematics and Statistics. 2022;51:74–82.
MLA Karpuz, Başak and Zehra Ozsever. “An Iterative Oscillation Test for Delay Difference Equations”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 1, 2022, pp. 74-82, doi:10.15672/hujms.944131.
Vancouver Karpuz B, Ozsever Z. An iterative oscillation test for delay difference equations. Hacettepe Journal of Mathematics and Statistics. 2022;51(1):74-82.