Research Article
BibTex RIS Cite

Commutative graded-$n$-coherent and graded valuation rings

Year 2022, Volume: 51 Issue: 4, 1047 - 1057, 01.08.2022
https://doi.org/10.15672/hujms.947574

Abstract

Let $R= \oplus_{ \alpha \in G} R_{\alpha}$ be a commutative ring with unity graded by an arbitrary grading commutative monoid $G$. For each positive integer, the notions of a graded-n-coherent module and a graded-n-coherent ring are introduced. In this paper many results are generalized from $n$-coherent rings to graded-$n$-coherent rings. In the last section, we provide necessary and sufficient conditions for the graded trivial extension ring to be a graded-valuation ring.

References

  • [1] D.D. Anderson, D.F. Anderson and G.W. Chang, Graded-valuation domains, Comm. Algebra 45 (9), 4018-4029, 2017.
  • [2] C. Bakkari, N. Mahdou and A. Riffi, Commutative graded-coherent rings, Indian J. Math. 61, 421-440, 2019
  • [3] C. Bakkari, N. Mahdou and A. Riffi, Uniformly graded-coherent rings, Quaestiones Mathematicae, 44 (10), 1371-1391, 2021.
  • [4] M. Bataineh and R. Abu-Dawwas, On graded 2-prime ideals, Mathematics, 9 (5), 493 (10 pages), 2021.
  • [5] N. Bourbaki, Algèbre Commutative Chapitres 1-4, Masson, Paris, 1985.
  • [6] N. Bourbaki, Algèbre, Chapitres 1-3, Springer-Verlag, Berlin, 2007.
  • [7] G.W. Chang and D.Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commut. Algebra, 10 (1), 45-61, 2018.
  • [8] D.L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22 (10), 3997-4011, 1994.
  • [9] D. Dobbs, S.E. Kabbaj and N. Mahdou, n-Coherent rings and modules, Lecture Notes in Pure and Applied Mathematics, 269-282, 1996.
  • [10] R. Gilmer, Commutative Semigroup Rings, Chicago, IL: University of Chicago Press, 1984.
  • [11] S. Glaz, Commutative Coherent Rings, Lecture notes in mathematics 1371, Springer- Verlag, Berlin, 1989.
  • [12] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Math. Library, Amsterdam, 1982.
  • [13] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. 1836, Springer-Verlag, Berlin, 2004.
  • [14] D.E. Rush, Noetherian properties in monoid rings, J. Pure Appl. Algebra, 185 (13), 259-278, 2003.
  • [15] W.V. Vasconcelos, The rings of Dimension two. Marcel Dekker, New York, 1976.

Year 2022, Volume: 51 Issue: 4, 1047 - 1057, 01.08.2022
https://doi.org/10.15672/hujms.947574

Abstract

References

  • [1] D.D. Anderson, D.F. Anderson and G.W. Chang, Graded-valuation domains, Comm. Algebra 45 (9), 4018-4029, 2017.
  • [2] C. Bakkari, N. Mahdou and A. Riffi, Commutative graded-coherent rings, Indian J. Math. 61, 421-440, 2019
  • [3] C. Bakkari, N. Mahdou and A. Riffi, Uniformly graded-coherent rings, Quaestiones Mathematicae, 44 (10), 1371-1391, 2021.
  • [4] M. Bataineh and R. Abu-Dawwas, On graded 2-prime ideals, Mathematics, 9 (5), 493 (10 pages), 2021.
  • [5] N. Bourbaki, Algèbre Commutative Chapitres 1-4, Masson, Paris, 1985.
  • [6] N. Bourbaki, Algèbre, Chapitres 1-3, Springer-Verlag, Berlin, 2007.
  • [7] G.W. Chang and D.Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commut. Algebra, 10 (1), 45-61, 2018.
  • [8] D.L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra, 22 (10), 3997-4011, 1994.
  • [9] D. Dobbs, S.E. Kabbaj and N. Mahdou, n-Coherent rings and modules, Lecture Notes in Pure and Applied Mathematics, 269-282, 1996.
  • [10] R. Gilmer, Commutative Semigroup Rings, Chicago, IL: University of Chicago Press, 1984.
  • [11] S. Glaz, Commutative Coherent Rings, Lecture notes in mathematics 1371, Springer- Verlag, Berlin, 1989.
  • [12] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland Math. Library, Amsterdam, 1982.
  • [13] C. Nastasescu and F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math. 1836, Springer-Verlag, Berlin, 2004.
  • [14] D.E. Rush, Noetherian properties in monoid rings, J. Pure Appl. Algebra, 185 (13), 259-278, 2003.
  • [15] W.V. Vasconcelos, The rings of Dimension two. Marcel Dekker, New York, 1976.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Anass Assarrar 0000-0002-8877-9287

Najib Mahdou 0000-0001-6353-1114

Ünsal Tekir 0000-0003-0739-1449

Suat Koç 0000-0003-1622-786X

Publication Date August 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 4

Cite

APA Assarrar, A., Mahdou, N., Tekir, Ü., Koç, S. (2022). Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics, 51(4), 1047-1057. https://doi.org/10.15672/hujms.947574
AMA Assarrar A, Mahdou N, Tekir Ü, Koç S. Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics. August 2022;51(4):1047-1057. doi:10.15672/hujms.947574
Chicago Assarrar, Anass, Najib Mahdou, Ünsal Tekir, and Suat Koç. “Commutative Graded-$n$-Coherent and Graded Valuation Rings”. Hacettepe Journal of Mathematics and Statistics 51, no. 4 (August 2022): 1047-57. https://doi.org/10.15672/hujms.947574.
EndNote Assarrar A, Mahdou N, Tekir Ü, Koç S (August 1, 2022) Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics 51 4 1047–1057.
IEEE A. Assarrar, N. Mahdou, Ü. Tekir, and S. Koç, “Commutative graded-$n$-coherent and graded valuation rings”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, pp. 1047–1057, 2022, doi: 10.15672/hujms.947574.
ISNAD Assarrar, Anass et al. “Commutative Graded-$n$-Coherent and Graded Valuation Rings”. Hacettepe Journal of Mathematics and Statistics 51/4 (August2022), 1047-1057. https://doi.org/10.15672/hujms.947574.
JAMA Assarrar A, Mahdou N, Tekir Ü, Koç S. Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics. 2022;51:1047–1057.
MLA Assarrar, Anass et al. “Commutative Graded-$n$-Coherent and Graded Valuation Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 4, 2022, pp. 1047-5, doi:10.15672/hujms.947574.
Vancouver Assarrar A, Mahdou N, Tekir Ü, Koç S. Commutative graded-$n$-coherent and graded valuation rings. Hacettepe Journal of Mathematics and Statistics. 2022;51(4):1047-5.