Bi-amalgamations subject to the clean and nil-clean properties
Year 2022,
, 494 - 500, 01.04.2022
Khalid Adarbeh
,
Mohammad Adarbeh
Abstract
This paper investigates necessary and sufficient conditions for a bi-amalgamation to inherit the clean as well as the nil-clean properties. The new results recovers different settings of other constructions such as duplications and amalgamations. All results are used to build new and illustrative examples arising as bi-amalgamations.
References
- [1] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1
(1), 3–56, 2009.
- [2] C. Bakkari and M. Es-Saidi, Nil-clean property in amalgamated algebras along an
ideal, Ann Univ Ferrara 65 (1), 15–20, 2019.
- [3] F. Campanini and C.A. Finocchiaro, Bi-amalgamated constructions, J. Algebra Appl.
18 (8), 1950148, 2019.
- [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated
duplication of a ring along an ideal, Comm. Algebra, 43 (1), 249–261, 2015.
- [5] M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras
along an ideal, Hacet. J. Math. Stat. 44 (1), 41–49, 2015.
- [6] M. D’Anna, A construction of Gorenstein rings, J. Algebra, 306, 507–519, 2006.
- [7] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal,
in: Commutative Algebra and Applications, Proceedings of the Fifth International
Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, W.
de Gruyter Publisher, Berlin, 155–172, 2009.
- [8] M. D’Anna, C.A. Finocchiaro and M. Fontana, New Algebraic Properties of an Amalgamated Algebra Along an Ideal, Comm. Algebra, 44 (5), 1836–1851, 2016.
- [9] M. D’Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in
amalgamated algebras along an ideal, J. Pure Appl. Algebra, 214, 1633–1641, 2010.
- [10] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443–459, 2007.
- [11] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
- [12] A.J. Diesl, Nil clean rings, J. Algebra 383, 197–211, 2013.
- [13] Y. Hirano, H. Tominaga and A. Yaqub, On rings in which every element is uniquely
expressible as a sum of a nilpotent element and a certain potent element, Math. J.
Okayama Univ. 30, 33–40, 1988.
- [14] N.A. Immormino, Clean rings and clean group rings, PhD Dissertation, Bowling
Green State University, 2013.
- [15] S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals,
J. Commut. Algebra, 9 (1), 65–87, 2017.
- [16] S. Kabbaj, N. Mahdou and M.A.S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl. 16 (2), 1750030, 2017.
- [17] W. Nicholson, Lifting idempotents and exchange rings, Trans. Am. Math. Soc. 229,
269–278, 1977.
Year 2022,
, 494 - 500, 01.04.2022
Khalid Adarbeh
,
Mohammad Adarbeh
References
- [1] D.D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra, 1
(1), 3–56, 2009.
- [2] C. Bakkari and M. Es-Saidi, Nil-clean property in amalgamated algebras along an
ideal, Ann Univ Ferrara 65 (1), 15–20, 2019.
- [3] F. Campanini and C.A. Finocchiaro, Bi-amalgamated constructions, J. Algebra Appl.
18 (8), 1950148, 2019.
- [4] M. Chhiti, M. Jarrar, S. Kabbaj and N. Mahdou, Prüfer conditions in an amalgamated
duplication of a ring along an ideal, Comm. Algebra, 43 (1), 249–261, 2015.
- [5] M. Chhiti, N. Mahdou and M. Tamekkante, Clean property in amalgamated algebras
along an ideal, Hacet. J. Math. Stat. 44 (1), 41–49, 2015.
- [6] M. D’Anna, A construction of Gorenstein rings, J. Algebra, 306, 507–519, 2006.
- [7] M. D’Anna, C.A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal,
in: Commutative Algebra and Applications, Proceedings of the Fifth International
Fez Conference on Commutative Algebra and Applications, Fez, Morocco, 2008, W.
de Gruyter Publisher, Berlin, 155–172, 2009.
- [8] M. D’Anna, C.A. Finocchiaro and M. Fontana, New Algebraic Properties of an Amalgamated Algebra Along an Ideal, Comm. Algebra, 44 (5), 1836–1851, 2016.
- [9] M. D’Anna, C.A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in
amalgamated algebras along an ideal, J. Pure Appl. Algebra, 214, 1633–1641, 2010.
- [10] M. D’Anna and M. Fontana, An amalgamated duplication of a ring along an ideal:
the basic properties, J. Algebra Appl. 6 (3), 443–459, 2007.
- [11] M. D’Anna and M. Fontana, The amalgamated duplication of a ring along a multiplicative canonical ideal, Ark. Mat. 45 (2), 241–252, 2007.
- [12] A.J. Diesl, Nil clean rings, J. Algebra 383, 197–211, 2013.
- [13] Y. Hirano, H. Tominaga and A. Yaqub, On rings in which every element is uniquely
expressible as a sum of a nilpotent element and a certain potent element, Math. J.
Okayama Univ. 30, 33–40, 1988.
- [14] N.A. Immormino, Clean rings and clean group rings, PhD Dissertation, Bowling
Green State University, 2013.
- [15] S. Kabbaj, K. Louartiti, and M. Tamekkante, Bi-amalgamated algebras along ideals,
J. Commut. Algebra, 9 (1), 65–87, 2017.
- [16] S. Kabbaj, N. Mahdou and M.A.S. Moutui, Bi-amalgamations subject to the arithmetical property, J. Algebra Appl. 16 (2), 1750030, 2017.
- [17] W. Nicholson, Lifting idempotents and exchange rings, Trans. Am. Math. Soc. 229,
269–278, 1977.