Year 2018,
Volume: 47 Issue: 2, 447 - 461, 01.04.2018
Mahmood Kharrati-kopaei
,
Ehsan Kharati Koopaei
References
- Chang, Y. P., Huang, W. T. Simultaneous ducial generalized condence intervals for all
pairwise comparisons of means, International Journal of information and Management Sci-
ences 20, 459-467, 2009.
- Hannig, J., Iyer, H., Patterson, P. Fiducial generalized condence intervals, Journal of
American Statistical Association 101, 254-269, 2006a.
- Hannig, J., Lidong, E., Abdel-Karim, A., Iyer, H. Simultaneous ducial generalized con-
dence intervals for ratios of means of Lognormal distributions, Austrian Journal of Statis-
tics, 35, 261-269, 2006b.
- Kharrati-Kopaei, M. A note on the simultaneous condence intervals for the successive
dierences of exponential location parameters under heteroscedasticity, Statistical Method-
ology 22, 1-7, 2015.
- Kharrati-Kopaei, M., Malekzadeh, A., Sadooghi-Alvandi, S. M. Simultaneous ducial gener-
alized condence intervals for the successive dierences of exponential location parameters
under heteroscedasticity, Statistics and Probability Letters 83, 1547-1552, 2013.
- Lam, K. Subset selection of normal population under heteroscedasticity, in: Proceedings
of the second international advanced seminar/workshop on inference procedures associated
with statistical ranking and selection, Sydney, Australia, 1987.
- Lam, K. An improved two-stage selection procedure, Communications in Statistics, Simu-
lation and Computation 17 (3), 995-1005, 1988.
- Lam, K., Ng, C. K. Two-stage procedures for comparing several exponential populations
with a control when scale parameters are unknown and unequal, Sequential Analysis 9 (2),
151-164, 1990.
- Lawless, J. F., Singhal, K. Analysis of data from life test experiments under an exponential
model, Naval Research Logistic Quarterly 27, 323-334, 1980.
- Malekzadeh, A., Kharrati-Kopaei, M., Sadooghi-Alvandi, S. M. Comparing Exponential
Location Parameters with Several Controls Under Heteroscedasticity, Computational Sta-
tistics, DOI 10.1007/s00180-014-0481-6, 2014.
- Maurya, V., Gill, A. N., Singh, P. Multiple comparisons with a control for exponential
location parameters under heteroscedasticity, Journal of Applied Statistics 40, 1817-1830,
2013.
- Maurya, V., Goyal, A., Gill, A. N. Multiple comparisons with more than one control for
exponential location parameters under heteroscedasticity, Communications in Statistics-
Simulation and Computation 40, 621-644, 2011.
- Ng, C. K., Lam, K., Chen, H. J. Multiple comparisons of exponential location parameters
with the best under type II censoring, American Journal of Mathematical and Management
Sciences 12, 383-402, 1993.
- Singh, P., Abebe, A. Comparing several exponential populations with more than one control,
Statistical Methods and Applications 18, 359-374, 2009.
- Wu, S., Lin, Y. P., Yu, Y. R. One-stage multiple comparisons with the control for exponential
location parameters under heteroscedasticity, Computational Statistics and Data Analysis
54, 1372-1380, 2010.
- Wu, S. F., Wu C. C. Two-stage multiple comparisons with the average for exponential
location parameters under heteroscedasticity, Journal of Statistics and Planning Inference
134, 392-408, 2005.
- Zelen, M. Application of exponential models problems in cancer research, Journal of Royal
Statistical Society Series A (129), 368-398, 1966.
A note on the multiple comparisons of exponential location parameters with several controls under heteroscedasticity
Year 2018,
Volume: 47 Issue: 2, 447 - 461, 01.04.2018
Mahmood Kharrati-kopaei
,
Ehsan Kharati Koopaei
Abstract
Several researchers have addressed the problem of constructing simultaneous confidence intervals (SCIs) for comparing exponential location parameters with a control or controls under heteroscedasticity when sample sizes are equal or unequal. They usually used simulation-based inference procedures or Lam's technique that leads to conservative SCIs. In this paper, we present a set of SCIs for comparing exponential location parameters with a control, controls and the best control under heteroscedasticity when sample sizes are possibly unequal. Our method is not a simulation-based inference procedure and our results show that the proposed SCIs have some advantages over others.
References
- Chang, Y. P., Huang, W. T. Simultaneous ducial generalized condence intervals for all
pairwise comparisons of means, International Journal of information and Management Sci-
ences 20, 459-467, 2009.
- Hannig, J., Iyer, H., Patterson, P. Fiducial generalized condence intervals, Journal of
American Statistical Association 101, 254-269, 2006a.
- Hannig, J., Lidong, E., Abdel-Karim, A., Iyer, H. Simultaneous ducial generalized con-
dence intervals for ratios of means of Lognormal distributions, Austrian Journal of Statis-
tics, 35, 261-269, 2006b.
- Kharrati-Kopaei, M. A note on the simultaneous condence intervals for the successive
dierences of exponential location parameters under heteroscedasticity, Statistical Method-
ology 22, 1-7, 2015.
- Kharrati-Kopaei, M., Malekzadeh, A., Sadooghi-Alvandi, S. M. Simultaneous ducial gener-
alized condence intervals for the successive dierences of exponential location parameters
under heteroscedasticity, Statistics and Probability Letters 83, 1547-1552, 2013.
- Lam, K. Subset selection of normal population under heteroscedasticity, in: Proceedings
of the second international advanced seminar/workshop on inference procedures associated
with statistical ranking and selection, Sydney, Australia, 1987.
- Lam, K. An improved two-stage selection procedure, Communications in Statistics, Simu-
lation and Computation 17 (3), 995-1005, 1988.
- Lam, K., Ng, C. K. Two-stage procedures for comparing several exponential populations
with a control when scale parameters are unknown and unequal, Sequential Analysis 9 (2),
151-164, 1990.
- Lawless, J. F., Singhal, K. Analysis of data from life test experiments under an exponential
model, Naval Research Logistic Quarterly 27, 323-334, 1980.
- Malekzadeh, A., Kharrati-Kopaei, M., Sadooghi-Alvandi, S. M. Comparing Exponential
Location Parameters with Several Controls Under Heteroscedasticity, Computational Sta-
tistics, DOI 10.1007/s00180-014-0481-6, 2014.
- Maurya, V., Gill, A. N., Singh, P. Multiple comparisons with a control for exponential
location parameters under heteroscedasticity, Journal of Applied Statistics 40, 1817-1830,
2013.
- Maurya, V., Goyal, A., Gill, A. N. Multiple comparisons with more than one control for
exponential location parameters under heteroscedasticity, Communications in Statistics-
Simulation and Computation 40, 621-644, 2011.
- Ng, C. K., Lam, K., Chen, H. J. Multiple comparisons of exponential location parameters
with the best under type II censoring, American Journal of Mathematical and Management
Sciences 12, 383-402, 1993.
- Singh, P., Abebe, A. Comparing several exponential populations with more than one control,
Statistical Methods and Applications 18, 359-374, 2009.
- Wu, S., Lin, Y. P., Yu, Y. R. One-stage multiple comparisons with the control for exponential
location parameters under heteroscedasticity, Computational Statistics and Data Analysis
54, 1372-1380, 2010.
- Wu, S. F., Wu C. C. Two-stage multiple comparisons with the average for exponential
location parameters under heteroscedasticity, Journal of Statistics and Planning Inference
134, 392-408, 2005.
- Zelen, M. Application of exponential models problems in cancer research, Journal of Royal
Statistical Society Series A (129), 368-398, 1966.