Research Article
BibTex RIS Cite

Approximation of fractional-order Chemostat model with nonstandard finite difference scheme

Year 2017, Volume: 46 Issue: 3, 469 - 482, 01.06.2017

Abstract

In this paper, the fractional-order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of mentioned fractional system, the well known nonstandard
finite difference (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and fourth order Runge-Kutta methods. Numerical results show that the NSFD approach is easy and accurate when applied to fractional-order chemostat model.

References

  • E. Ahmed, A. M. A. ElSayed and H. A. A. ElSaka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358 (2006), 14.
  • E. Ahmed, A. Hashish and F. A. Rihan, On fractional order cancer model, Journal of Fractional Calculus and Applied Analysis, 3 ( 2012), 16.
  • A. A. M. Arafa, S. Z. Rida and M. Khalil, Fractional modelling dynamics of HIV and CD4+ T-cells during primary infection, Nonlinear Biomedical Physics,6 (2012), article 1.
  • J. Arino, S. S. pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth and competition in chemostat models, Can. Appl. Math. Quart. 11 ( 2003), 107142.
  • K. Assaleh and W. M. Ahmad, Modeling of speech signals using fractional calculus, in: Proceedings of the 9th International Symposiumon Signal Processing and its Applications (ISSPA'07), Sharjah, United Arab Emirates, February 2007.
  • K. S. Cole, Electric conductance of biological systems, Cold Spring Harbor Symposia on Quantitative Biology, 107116, 1993.
  • W.-C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36 ( 2008), 13051314.
  • A. M. A. El-Sayed,A. E. M. El-Mesiry, and H. A. A. El-Saka, On the fractional-order logistic equation, Applied Mathematics Letters, 20 (2007), 817823.
  • H. Xu, Analytical approximations for a population growth model with fractional order, Com- munications in Nonlinear Science and Numerical Simulation, 14 (2009), 19781983.
  • L. Debnath, Recent applications of fractional calculus to science and engineering, Interna- tional Journal of Mathematics and Mathematical Sciences, 54 ( 2003) 34133442.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientic, Singapore, 2000.
  • Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology, 12 ( 2012), Article ID 12400088, 13 pages.
  • X. Huang and L. M. Zhu, Bifurication in the stable manifold of the bioreactor with nth and mth order polynomial yields, Journal of Mathematical Chemistry, 46 (2009), 199213.
  • W. Lin, Global existence theory and chaos control of fractional differential equations, Jour- nal of Mathematical Analysis and Applications, 332 ( 2007), 709726.
  • D. Matignon, Stability result on fractional differential equations with applications to control processing, Computational engineering in systems applications, 1996, 963968.
  • R. E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numerical Methods for Partial Dierential Equations, 23 (2007), 672-691.
  • R. E. Mickens, Discretizations of nonlinear differential equations using explicit nonstandard methods , Journal of Computational and Applied Mathematics, 110 (1999), 181-185.
  • R. E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, Wiley-Interscience, Singapore 2005.
  • R. E. Mickens, Applications of Nonstandard Finite Difference Schemes, Singapore 2000.
  • R. E. Mickens, A. Smith, Finite-dierence models of ordinary differential equations : inu- ence of denominator functions, J. Franklin Inst., 327 (1990), 143149.
  • R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations World Scienti c, 1994
  • S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci., 182 (2003), 151166.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York 1999. .
  • H. Sheng, Y. Q. Chen and T. S. Qiu, Fractional Processes and Fractional-Order Signal Processing, Springer, New York, NY, USA, 2012.
  • H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, Cam- bridge 1995.
  • S. B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an $A+B\to C$ reactionsub-diffusion process, Physical Review E, 69 (2004), Article ID 036126.
Year 2017, Volume: 46 Issue: 3, 469 - 482, 01.06.2017

Abstract

References

  • E. Ahmed, A. M. A. ElSayed and H. A. A. ElSaka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems, Physics Letters A, 358 (2006), 14.
  • E. Ahmed, A. Hashish and F. A. Rihan, On fractional order cancer model, Journal of Fractional Calculus and Applied Analysis, 3 ( 2012), 16.
  • A. A. M. Arafa, S. Z. Rida and M. Khalil, Fractional modelling dynamics of HIV and CD4+ T-cells during primary infection, Nonlinear Biomedical Physics,6 (2012), article 1.
  • J. Arino, S. S. pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth and competition in chemostat models, Can. Appl. Math. Quart. 11 ( 2003), 107142.
  • K. Assaleh and W. M. Ahmad, Modeling of speech signals using fractional calculus, in: Proceedings of the 9th International Symposiumon Signal Processing and its Applications (ISSPA'07), Sharjah, United Arab Emirates, February 2007.
  • K. S. Cole, Electric conductance of biological systems, Cold Spring Harbor Symposia on Quantitative Biology, 107116, 1993.
  • W.-C. Chen, Nonlinear dynamics and chaos in a fractional-order financial system, Chaos, Solitons and Fractals, 36 ( 2008), 13051314.
  • A. M. A. El-Sayed,A. E. M. El-Mesiry, and H. A. A. El-Saka, On the fractional-order logistic equation, Applied Mathematics Letters, 20 (2007), 817823.
  • H. Xu, Analytical approximations for a population growth model with fractional order, Com- munications in Nonlinear Science and Numerical Simulation, 14 (2009), 19781983.
  • L. Debnath, Recent applications of fractional calculus to science and engineering, Interna- tional Journal of Mathematics and Mathematical Sciences, 54 ( 2003) 34133442.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientic, Singapore, 2000.
  • Y. Ferdi, Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology, 12 ( 2012), Article ID 12400088, 13 pages.
  • X. Huang and L. M. Zhu, Bifurication in the stable manifold of the bioreactor with nth and mth order polynomial yields, Journal of Mathematical Chemistry, 46 (2009), 199213.
  • W. Lin, Global existence theory and chaos control of fractional differential equations, Jour- nal of Mathematical Analysis and Applications, 332 ( 2007), 709726.
  • D. Matignon, Stability result on fractional differential equations with applications to control processing, Computational engineering in systems applications, 1996, 963968.
  • R. E. Mickens, Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numerical Methods for Partial Dierential Equations, 23 (2007), 672-691.
  • R. E. Mickens, Discretizations of nonlinear differential equations using explicit nonstandard methods , Journal of Computational and Applied Mathematics, 110 (1999), 181-185.
  • R. E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, Wiley-Interscience, Singapore 2005.
  • R. E. Mickens, Applications of Nonstandard Finite Difference Schemes, Singapore 2000.
  • R. E. Mickens, A. Smith, Finite-dierence models of ordinary differential equations : inu- ence of denominator functions, J. Franklin Inst., 327 (1990), 143149.
  • R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations World Scienti c, 1994
  • S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield, Math. Biosci., 182 (2003), 151166.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York 1999. .
  • H. Sheng, Y. Q. Chen and T. S. Qiu, Fractional Processes and Fractional-Order Signal Processing, Springer, New York, NY, USA, 2012.
  • H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge Univ. Press, Cam- bridge 1995.
  • S. B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an $A+B\to C$ reactionsub-diffusion process, Physical Review E, 69 (2004), Article ID 036126.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

M. Zeinadini This is me

M. Namjoo This is me

Publication Date June 1, 2017
Published in Issue Year 2017 Volume: 46 Issue: 3

Cite

APA Zeinadini, M., & Namjoo, M. (2017). Approximation of fractional-order Chemostat model with nonstandard finite difference scheme. Hacettepe Journal of Mathematics and Statistics, 46(3), 469-482.
AMA Zeinadini M, Namjoo M. Approximation of fractional-order Chemostat model with nonstandard finite difference scheme. Hacettepe Journal of Mathematics and Statistics. June 2017;46(3):469-482.
Chicago Zeinadini, M., and M. Namjoo. “Approximation of Fractional-Order Chemostat Model With Nonstandard finite difference Scheme”. Hacettepe Journal of Mathematics and Statistics 46, no. 3 (June 2017): 469-82.
EndNote Zeinadini M, Namjoo M (June 1, 2017) Approximation of fractional-order Chemostat model with nonstandard finite difference scheme. Hacettepe Journal of Mathematics and Statistics 46 3 469–482.
IEEE M. Zeinadini and M. Namjoo, “Approximation of fractional-order Chemostat model with nonstandard finite difference scheme”, Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 3, pp. 469–482, 2017.
ISNAD Zeinadini, M. - Namjoo, M. “Approximation of Fractional-Order Chemostat Model With Nonstandard finite difference Scheme”. Hacettepe Journal of Mathematics and Statistics 46/3 (June 2017), 469-482.
JAMA Zeinadini M, Namjoo M. Approximation of fractional-order Chemostat model with nonstandard finite difference scheme. Hacettepe Journal of Mathematics and Statistics. 2017;46:469–482.
MLA Zeinadini, M. and M. Namjoo. “Approximation of Fractional-Order Chemostat Model With Nonstandard finite difference Scheme”. Hacettepe Journal of Mathematics and Statistics, vol. 46, no. 3, 2017, pp. 469-82.
Vancouver Zeinadini M, Namjoo M. Approximation of fractional-order Chemostat model with nonstandard finite difference scheme. Hacettepe Journal of Mathematics and Statistics. 2017;46(3):469-82.