Bivariate Cheney-Sharma operators on simplex
Year 2018,
Volume: 47 Issue: 4, 793 - 804, 01.08.2018
Gülen Başcanbaz-tunca
,
Ayşegül Erençin
,
Hatice Gül İnce-ilarslan
Abstract
In this paper, we consider bivariate Cheney-Sharma operators which are not the tensor product construction. Precisely, we show that these operators preserve Lipschitz condition of a given Lipschitz continuous function $f$ and also the properties of the modulus of continuity function
when $f$ is a modulus of continuity function.
References
- Agratini, O. and Rus, I. A. Iterates of a class of dicsrete linear operators via contraction
principle, Comment. Math. Univ. Carolin. 44(3), 555-563, 2003.
- Altomare, F. and Campiti, M. Korovkin-type approximaton theory and its applications, (Walter
de Gruyter, Berlin-New York, 1994).
- Başcanbaz-Tunca, G. and Tuncer, Y. On a Chlodovsky variant of a multivariate beta operator,
J. Comput. Appl. Math. 235(16), 4816-4824, 2011.
- Başcanbaz-Tunca, G. and Taşdelen, F. On Chlodovsky form of the Meyer-König and Zeller
operators, An. Univ. Vest Timiş. Ser. Mat.- Inform. 49(2), 137-144, 2011.
- Başcanbaz-Tunca, G., İnce-İlarslan, H. G. and Erençin, A. Bivariate Bernstein type operators,
Appl. Math. Comput. 273, 543-552, 2016.
- Başcanbaz-Tunca, G., Erençin, A. and Taşdelen, F. Some properties of Bernstein type Cheney
and Sharma operators(accepted).
- Brown, B.M., Elliott, D. and Paget, D.F. Lipschitz constants for the Bernstein polynomials
of a Lipschitz continuous function, J. Approx. Theory 49(2), 196-199, 1987.
- Cao, F. Modulus of continuity, K-functional and Stancu operator on a simplex, Indian J.
Pure Appl. Math. 35(12), 1343-1364, 2004.
- Cao, F., Ding, C. and Xu, Z. On multivariate Baskakov operator, J. Math. Anal. Appl.
307(1), 274-291, 2005.
- Catinaş, T. and Otrocol, D. Iterates of multivariate Cheney-Sharma operators, J. Comput.
Anal. Appl. 15(7), 1240-1246, 2013.
- Cheney, E. W. and Sharma, A. On a generalization of Bernstein polynomials, Riv. Mat.
Univ. Parma 2(5), 77-84, 1964.
- Craciun, M. Approximation operators constructed by means of Sheer sequences, Rev. Anal.
Numér. Théor. Approx. 30(2), 135-150, 2001.
- Ding, C. and Cao, F. K-functionals and multivariate Bernstein polynomials, J. Approx.
Theory, 155(2), 125-135, 2008.
- Erençin, A., Başcanbaz-Tunca, G. and Taşdelen, F. Some preservation properties of MKZ-Stancu
type operators, Sarajevo J. Math., 10(22)(1), 93-102, 2014.
- Erençin, A., Başcanbaz-Tunca, G. and Taşdelen, F. Some properties of the operators defined
by Lupaş, Rev. Anal. Numér. Théor. Approx. 43(2), 168-174, 2014.
- Farcaş, M. D. About Bernstein polynomials, An. Univ. Craiova Ser. Mat. Inform. 35, 117-
121, 2008.
- Khan, M. K. Approximation properties of Beta operators, Progress in approximation theory,
(Academic Press, Boston, MA, 1991), 483-495.
- Khan, M. K. and Peters, M. A. Lipschitz constants for some approximation operators of a
Lipschitz continuous function, J. Approx. Theory 59(3), 307-315, 1989.
- Li, Z. Bernstein polynomials and modulus of continuity, J. Approx. Theory 102(1), 171-174,
2000.
- Lindvall, T. Bernstein polynomials and the law of large numbers, Math. Sci. 7(2), 127-139,
1982.
- Stancu, D. D. and Cismaşiu, C. On an approximating linear positive operator of Cheney-
Sharma, Rev. Anal. Numér. Théor. Approx. 26(1-2), 221-227, 1997.
- Stancu, D. D., Cabulea, L. A. and Pop, D. Approximation of bivariate functions by means
of the operators $S_{m,n}^{\alpha,\beta;a,b}$, Stud. Univ. Babeş-Bolyai Math. 47(4), 105-113, 2002.
- Stancu, D. D. Use of an identity of A. Hurwitz for construction of a linear positive operator
of approximation, Rev. Anal. Numér. Théor. Approx. 31(1), 115-118, 2002.
- Stancu, D. D. and Stoica, E. I. On the use Abel-Jensen type combinatorial formulas for construction
and investigation of some algebraic polynomial operators of approximation, Stud.
Univ. Babeş-Bolyai Math. 54(4), 167-182, 2009.
- Stoica, E. I. On the combinatorial identities of Abel-Hurwitz type and their use in constructive
theory of functions , Stud. Univ. Babeş-Bolyai Math. 55(4), 249-257, 2010.
- Taşcu, I. Approximation of bivariate functions by operators of Stancu-Hurwitz type, Facta
Univ. Ser. Math. Inform. 20, 33-39, 2005.
- Taşcu, I. and Horvat-Marc, A. Construction of Stancu-Hurwitz operator for two variables,
Acta Univ. Apulensis Math. Inform. 11, 97-101, 2006.
- Trif, T. An elementary proof of the preservation of Lipschitz constants by the Meyer-König
and Zeller operators, J. Inequal. Pure Appl. Math. 4(5), Article90, 3pp., 2003.
Year 2018,
Volume: 47 Issue: 4, 793 - 804, 01.08.2018
Gülen Başcanbaz-tunca
,
Ayşegül Erençin
,
Hatice Gül İnce-ilarslan
References
- Agratini, O. and Rus, I. A. Iterates of a class of dicsrete linear operators via contraction
principle, Comment. Math. Univ. Carolin. 44(3), 555-563, 2003.
- Altomare, F. and Campiti, M. Korovkin-type approximaton theory and its applications, (Walter
de Gruyter, Berlin-New York, 1994).
- Başcanbaz-Tunca, G. and Tuncer, Y. On a Chlodovsky variant of a multivariate beta operator,
J. Comput. Appl. Math. 235(16), 4816-4824, 2011.
- Başcanbaz-Tunca, G. and Taşdelen, F. On Chlodovsky form of the Meyer-König and Zeller
operators, An. Univ. Vest Timiş. Ser. Mat.- Inform. 49(2), 137-144, 2011.
- Başcanbaz-Tunca, G., İnce-İlarslan, H. G. and Erençin, A. Bivariate Bernstein type operators,
Appl. Math. Comput. 273, 543-552, 2016.
- Başcanbaz-Tunca, G., Erençin, A. and Taşdelen, F. Some properties of Bernstein type Cheney
and Sharma operators(accepted).
- Brown, B.M., Elliott, D. and Paget, D.F. Lipschitz constants for the Bernstein polynomials
of a Lipschitz continuous function, J. Approx. Theory 49(2), 196-199, 1987.
- Cao, F. Modulus of continuity, K-functional and Stancu operator on a simplex, Indian J.
Pure Appl. Math. 35(12), 1343-1364, 2004.
- Cao, F., Ding, C. and Xu, Z. On multivariate Baskakov operator, J. Math. Anal. Appl.
307(1), 274-291, 2005.
- Catinaş, T. and Otrocol, D. Iterates of multivariate Cheney-Sharma operators, J. Comput.
Anal. Appl. 15(7), 1240-1246, 2013.
- Cheney, E. W. and Sharma, A. On a generalization of Bernstein polynomials, Riv. Mat.
Univ. Parma 2(5), 77-84, 1964.
- Craciun, M. Approximation operators constructed by means of Sheer sequences, Rev. Anal.
Numér. Théor. Approx. 30(2), 135-150, 2001.
- Ding, C. and Cao, F. K-functionals and multivariate Bernstein polynomials, J. Approx.
Theory, 155(2), 125-135, 2008.
- Erençin, A., Başcanbaz-Tunca, G. and Taşdelen, F. Some preservation properties of MKZ-Stancu
type operators, Sarajevo J. Math., 10(22)(1), 93-102, 2014.
- Erençin, A., Başcanbaz-Tunca, G. and Taşdelen, F. Some properties of the operators defined
by Lupaş, Rev. Anal. Numér. Théor. Approx. 43(2), 168-174, 2014.
- Farcaş, M. D. About Bernstein polynomials, An. Univ. Craiova Ser. Mat. Inform. 35, 117-
121, 2008.
- Khan, M. K. Approximation properties of Beta operators, Progress in approximation theory,
(Academic Press, Boston, MA, 1991), 483-495.
- Khan, M. K. and Peters, M. A. Lipschitz constants for some approximation operators of a
Lipschitz continuous function, J. Approx. Theory 59(3), 307-315, 1989.
- Li, Z. Bernstein polynomials and modulus of continuity, J. Approx. Theory 102(1), 171-174,
2000.
- Lindvall, T. Bernstein polynomials and the law of large numbers, Math. Sci. 7(2), 127-139,
1982.
- Stancu, D. D. and Cismaşiu, C. On an approximating linear positive operator of Cheney-
Sharma, Rev. Anal. Numér. Théor. Approx. 26(1-2), 221-227, 1997.
- Stancu, D. D., Cabulea, L. A. and Pop, D. Approximation of bivariate functions by means
of the operators $S_{m,n}^{\alpha,\beta;a,b}$, Stud. Univ. Babeş-Bolyai Math. 47(4), 105-113, 2002.
- Stancu, D. D. Use of an identity of A. Hurwitz for construction of a linear positive operator
of approximation, Rev. Anal. Numér. Théor. Approx. 31(1), 115-118, 2002.
- Stancu, D. D. and Stoica, E. I. On the use Abel-Jensen type combinatorial formulas for construction
and investigation of some algebraic polynomial operators of approximation, Stud.
Univ. Babeş-Bolyai Math. 54(4), 167-182, 2009.
- Stoica, E. I. On the combinatorial identities of Abel-Hurwitz type and their use in constructive
theory of functions , Stud. Univ. Babeş-Bolyai Math. 55(4), 249-257, 2010.
- Taşcu, I. Approximation of bivariate functions by operators of Stancu-Hurwitz type, Facta
Univ. Ser. Math. Inform. 20, 33-39, 2005.
- Taşcu, I. and Horvat-Marc, A. Construction of Stancu-Hurwitz operator for two variables,
Acta Univ. Apulensis Math. Inform. 11, 97-101, 2006.
- Trif, T. An elementary proof of the preservation of Lipschitz constants by the Meyer-König
and Zeller operators, J. Inequal. Pure Appl. Math. 4(5), Article90, 3pp., 2003.