Research Article
BibTex RIS Cite

The bias reduction in density estimation using a geometric extrapolated kernel estimator

Year 2018, Volume: 47 Issue: 4, 1003 - 1021, 01.08.2018

Abstract

One of the nonparametric methods to estimate the probability density is kernel method. In this paper, kernel density estimation methods including the naive kernel(NK) estimator and geometric extrapolation based kernel(GEBK) method are introduced and discussed. Theoretical properties, including the selection of smoothing parameter, the accuracy of resultant estimators using Monte Carlo simulation are studied. The results show that the amount of bias in the proposed geometric extrapolation based kernel estimator significantly decreases.

References

  • Azzalini, A. and Bowman, A. W. A look at some data on the Old Faithful geyser, Applied Statistics 39, 357-365, 1990.
  • Burden, Richard L. and Faires, J. Douglas Numerical analysis. 9th ed., Brooks/Cole, 2010.
  • Farrell, R.H. On the best obtainable asymptotic rates of convergence in estimation of a density function at a point, The Annals of Mathematics and Statistics, 43, 170-180, 1972.
  • Hardle, W. Smoothing techniques: with implementation in S, Springer-Verlag Newyork, 1991.
  • Igarashi G. and Kakizawa Y. Bias corrections for some asymmetric kernel estimators, Jour- nal of Statistical Planning and Inference, 159, 37-63, 2015.
  • Kairat T. Mynbaev, Saralees Nadarajah, Christopher S. Withers, Aziza S. Aipenova, Im- proving bias in kernel density estimation, Statistics and Probability Letters, 94, 106-112, 2014.
  • Kim, C., Kim, W. and Park, B.U. Skewing and generalized Jackkning in kernel density estimation, Communications in Statistics: Theory and Methods, 32, 2153-2162, 2003.
  • Kim, J. and Kim, C. Reducing the mean squared error in kernel density estimation. Journal of the Korean Statistical Society, 42, 387-397, 2013.
  • Mynbaev, K. and Martins-Filho, C. Bias reduction in kernel density estimation via Lipschitz condition. Journal of Nonparametric Statistics, 22, 219-235, 2010.
  • Parzen E. On estimation of a probability density function and mode, Ann. Math. Stat. 33(3), 1065-1076, 1962.
  • Rosenblatt M. Remarks on some nonparametric estimates of a density function, Ann. Math. Stat. 27(3), 832837, 1956.
  • Silverman B.W. Density estimation for statistics and data analysis, first ed., Chapman and Hall, USA. 1986.
  • Souza, W. B., Santos, A. H. S., and Cordeiro, G. M., The beta generalized exponential distribution, Journal of Statistical Computation and Simulation, 80, 159-172, 2010.
  • Terrell, G.R. and Scott, D.W. On improving convergence rates for nonnegative kernel density estimators. The Annals of Statistics, 8, 1160-1163, 1980.
  • Wand, M.P. and Jones, M.C. Kernel smoothing. Chapman & Hall, London, 1995.
Year 2018, Volume: 47 Issue: 4, 1003 - 1021, 01.08.2018

Abstract

References

  • Azzalini, A. and Bowman, A. W. A look at some data on the Old Faithful geyser, Applied Statistics 39, 357-365, 1990.
  • Burden, Richard L. and Faires, J. Douglas Numerical analysis. 9th ed., Brooks/Cole, 2010.
  • Farrell, R.H. On the best obtainable asymptotic rates of convergence in estimation of a density function at a point, The Annals of Mathematics and Statistics, 43, 170-180, 1972.
  • Hardle, W. Smoothing techniques: with implementation in S, Springer-Verlag Newyork, 1991.
  • Igarashi G. and Kakizawa Y. Bias corrections for some asymmetric kernel estimators, Jour- nal of Statistical Planning and Inference, 159, 37-63, 2015.
  • Kairat T. Mynbaev, Saralees Nadarajah, Christopher S. Withers, Aziza S. Aipenova, Im- proving bias in kernel density estimation, Statistics and Probability Letters, 94, 106-112, 2014.
  • Kim, C., Kim, W. and Park, B.U. Skewing and generalized Jackkning in kernel density estimation, Communications in Statistics: Theory and Methods, 32, 2153-2162, 2003.
  • Kim, J. and Kim, C. Reducing the mean squared error in kernel density estimation. Journal of the Korean Statistical Society, 42, 387-397, 2013.
  • Mynbaev, K. and Martins-Filho, C. Bias reduction in kernel density estimation via Lipschitz condition. Journal of Nonparametric Statistics, 22, 219-235, 2010.
  • Parzen E. On estimation of a probability density function and mode, Ann. Math. Stat. 33(3), 1065-1076, 1962.
  • Rosenblatt M. Remarks on some nonparametric estimates of a density function, Ann. Math. Stat. 27(3), 832837, 1956.
  • Silverman B.W. Density estimation for statistics and data analysis, first ed., Chapman and Hall, USA. 1986.
  • Souza, W. B., Santos, A. H. S., and Cordeiro, G. M., The beta generalized exponential distribution, Journal of Statistical Computation and Simulation, 80, 159-172, 2010.
  • Terrell, G.R. and Scott, D.W. On improving convergence rates for nonnegative kernel density estimators. The Annals of Statistics, 8, 1160-1163, 1980.
  • Wand, M.P. and Jones, M.C. Kernel smoothing. Chapman & Hall, London, 1995.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Statistics
Authors

Reza Salehi This is me

Ali Shadrokh This is me

Publication Date August 1, 2018
Published in Issue Year 2018 Volume: 47 Issue: 4

Cite

APA Salehi, R., & Shadrokh, A. (2018). The bias reduction in density estimation using a geometric extrapolated kernel estimator. Hacettepe Journal of Mathematics and Statistics, 47(4), 1003-1021.
AMA Salehi R, Shadrokh A. The bias reduction in density estimation using a geometric extrapolated kernel estimator. Hacettepe Journal of Mathematics and Statistics. August 2018;47(4):1003-1021.
Chicago Salehi, Reza, and Ali Shadrokh. “The Bias Reduction in Density Estimation Using a Geometric Extrapolated Kernel Estimator”. Hacettepe Journal of Mathematics and Statistics 47, no. 4 (August 2018): 1003-21.
EndNote Salehi R, Shadrokh A (August 1, 2018) The bias reduction in density estimation using a geometric extrapolated kernel estimator. Hacettepe Journal of Mathematics and Statistics 47 4 1003–1021.
IEEE R. Salehi and A. Shadrokh, “The bias reduction in density estimation using a geometric extrapolated kernel estimator”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, pp. 1003–1021, 2018.
ISNAD Salehi, Reza - Shadrokh, Ali. “The Bias Reduction in Density Estimation Using a Geometric Extrapolated Kernel Estimator”. Hacettepe Journal of Mathematics and Statistics 47/4 (August 2018), 1003-1021.
JAMA Salehi R, Shadrokh A. The bias reduction in density estimation using a geometric extrapolated kernel estimator. Hacettepe Journal of Mathematics and Statistics. 2018;47:1003–1021.
MLA Salehi, Reza and Ali Shadrokh. “The Bias Reduction in Density Estimation Using a Geometric Extrapolated Kernel Estimator”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 4, 2018, pp. 1003-21.
Vancouver Salehi R, Shadrokh A. The bias reduction in density estimation using a geometric extrapolated kernel estimator. Hacettepe Journal of Mathematics and Statistics. 2018;47(4):1003-21.