$L^M$-valued equalities, $L^M$-rough approximation operators and $ML$-graded ditopologies
Year 2017,
Volume: 46 Issue: 1, 15 - 32, 01.02.2017
Alexander \v{s}ostak
Aleksandrs Elkins
Abstract
We introduce a certain many-valued generalization of the concept of an $L$-valued equality called an $L^M$-valued equality. Properties of $L^M$-valued equalities are studied and a construction of an $L^M$-valued equality from a pseudo-metric is presented. $L^M$-valued equalities are applied to introduce upper and lower $L^M$-rough approximation operators, which are essentially many-valued generalizations of Z. Pawlak's rough approximation operators and of their fuzzy counterparts. We study properties of these operators and their mutual interrelations. In its turn, $L^M$-rough approximation operators are used to induce topological-type structures, called here $ML$-graded ditopologies.
References
- U. Bodenhofer, Ordering of fuzzy sets based on fuzzy orderings. I: The basic approach,
Mathware Soft Comput. 15 (2008) 201218.
- U. Bodenhofer, Ordering of fuzzy sets based on fuzzy orderings. II: Generalizations, Mathware
Soft Comput. 15 (2008) 219249.
- L.M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets Fuzzy Sets and
Syst. 98, (1998) 217224.
- L.M. Brown, R. Ertürk, S. Dost, Ditopological texture spaces and fuzzy topology, I. Basic
concepts, Fuzzy Sets and Syst. 147, (2004) 171199.
- L.M. Brown, R. Ertürk, S. Dost, Ditopological texture spaces and fuzzy topology, II. Topo-
logical considerations, Fuzzy Sets and Syst. 147, (2004) 201231. 18861912.
- L.M. Brown, A. Sostak, Categories of fuzzy topologies in the context of graded ditopologies,
Iranian J. Of Fuzzy Systems, Systems 11, No. 6, (2014) pp. 1-20
- C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182190 (1968)
- K.C. Chattopadhyay, R.N. Nasra, S.K. Samanta, Gradation of openness: Fuzzy topology,
Fuzzy Sets and Syst. 48 (1992), 237242.
- K.C. Chattopadhyay, S.K. Samanta, Fuzzy closure operators, fuzzy compactness and fuzzy
connectedness, Fuzzy Sets and Syst. 54 (1992), 237242.
- P. Chen, D. Zhang, Alexandro L-cotopological spaces, Fuzzy Sets and Systems 161 (2010)
2505 2525.
- M. Demirci, Fuzzy functions and their fundamental properties, Fuzzy Sets Syst. 106 (1999),
239246
- D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets. Internat. J. General Syst. 17,
191209 (1990)
- A. Elkins, A. Sostak, On some categories of approximate systems generated by L-relations.
In: 3rd Rough Sets Theory Workshop, pp. 1419 Milan, Italy (2011)
- A. Elkins, A. Sostak, I. Uljane, On a category of extensional fuzzy rough approximation
L-valued spaces, In: Communication in Computer and Information Science, vol 611 (2016).
16th. International Conference IPMU 2016, Eindhofen, The Netherlands, June 20-24, 2016,
Proceedings, Part II, 36-47.
- G. Gierz, K.H. Homan, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous
Lattices and Domains, Cambridge University Press, Cambridge (2003)
- J.A. Goguen, The fuzzy Tychono theorem, J. Math. Anal. Appl. 43, 734742 (1973)
- J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145174.
- J. Hao, Q. Li, The relation between L-fuzzy rough sets and L-topology, Fuzzy Sets and
Systems, 178 (2011)
- U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids Chapter 2 in
Applications of Category Theory to Fuzzy Sets, 1992, Kluwer Acad. Press, S.E. Rodabaugh,
E.P. Klement and U. Höhle eds, pp. 3372.
- U. Höhle, Commutative, residuated l-monoids, in: S.E. Rodabaugh, E.P. Klement, U. Höhle
eds., Non-classical logics and their applications to Fuzzy Sets. Kluwer Acad. Publ. Dodrecht,
Boston 1995, pp. 53106.
- U. Höhle, Many-valued equalities, singletons and fuzzy partitions Soft Computing 2 (1998),
134140.
- U. Höhle, Many Valued Topology and its Application Kluwer Acad. Publ. 2001, Boston,
Dodrecht, London.
- J. Järvinen, J. Kortelainen, A unified study between modal-like operators, topologies and
fuzzy sets, Fuzzy Sets and Systems 158 (2007) 12171225.
- F. Klawonn, Fuzzy points, fuzzy relations and fuzzy functions, in: V. Novák, I. Perlieva
(Eds.), Discovering the World with Fuzzy Logic, Springer, Berlin, 2000, pp. 431453.
- E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Acad. Publ., 2000.
- J. Kortelainen, On relationship between modified sets, topological spaces and rough sets,
Fuzzy Sets and Systems 61 (1994) 91-95.
- T. Kubiak, On fuzzy topologies, PhD Thesis, Adam Mickiewicz University Poznan, Poland
(1985)
- Liu Yingming, Luo Maokang, Fuzzy Topology Advances in Fuzzy Systems - Applications
and Topology. World Scientif. Singapore, New Jersey, London, Hong Kong, 1997.
- K. Menger, Probabilistic geometry, Proc. N.A.S. 27 (1951), 226229.
- J.S. Mi, B.Q. Hu Topological and lattice structure of L-fuzzy rough sets determined by upper
and lower sets, Information Sciences 218 (2013) 194204.
- W. Morgan, and R. P. Dilworth Residuated lattices Trans. Amer. Math. Soc. 45 (1939) 335-
354. Reprinted in K.Bogart, R. Freese, and J. Kung eds. The Dilworth Theorems: Selected
Papers of R.P. Dilworth Basel, 1990 Birkhauser.
- Z. Pawlak, Rough sets , International J. of Computer and Information Sciences, 11 (1982)
341-356.
- K. Qin, Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems
151 (2005) 601613.
- K. Qin, Z. Pei, Generalized rough sets based on reexive and transitive relations, Information
Sciences 178 (2008) 41384141.
- A.M. Radzikowska, E.E. Kerre, A comparative study of fuzzy rough sets. Fuzzy Sets and
Syst. 126, 137155 (2002)
- G.N. Raney, A subdirect-union representation for completely distibutive complete lattices,
Proc. Amer. Math. Soc. 4 (1953), 518522.
- K.I. Rosenthal Quantales and Their Applications, Pirman Research Notes in Mathematics
234. Longman Scientic & Technical (1990)
- B. Schweizer, A. Sklar, Statistical metric spaces, Pacic J. Math. 10, 215229.
- A. Skowron, On the topology in information systems, Bull. Polon. Acad. Sci. Math. 36
(1988), 477480.
- A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Mat. Palermo Ser II 11
(1985), 89-103
- A. Sostak, Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math.
Surveys, 44 (1989), 125186
- A. Sostak, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), 662701.
- A. Sostak, Fuzzy functions and an extension of the category L-TOP of Chang-Goguen L-
topological spaces, Proceedings of the 9th Prague Topological Symposium (2001), 271294.
- S.P. Tiwari, A.K. Srivastava, Fuzzy rough sets. fuzzy preoders and fuzzy topoloiges, Fuzzy
Sets and Syst., 210 (2013), 6368.
- I. Ul,jane, On the order type L-valued relations on L-powersets, Soft Computing 14 (2007),
183-199.
- L. Valverde, On the structure of F-indistinguishibility operators, Fuzzy Sets and Syst. 17
(1985) 313328.
- A. Wiweger, On topological rough sets, Bull. Polon. Acad. Sci. Math. 37 (1988), 5162.
- H. Yu, W.R. Zhan, On the topological properties of generalized rough sets, Information
Sciences 263 (2014), 141152.
- L. Zadeh, Fuzzy sets, Information and Control (1965)
- L. Zadeh Similarity relations and fuzzy orderings, Inf. Sci. 3 (1971) 177200.
Year 2017,
Volume: 46 Issue: 1, 15 - 32, 01.02.2017
Alexander \v{s}ostak
Aleksandrs Elkins
References
- U. Bodenhofer, Ordering of fuzzy sets based on fuzzy orderings. I: The basic approach,
Mathware Soft Comput. 15 (2008) 201218.
- U. Bodenhofer, Ordering of fuzzy sets based on fuzzy orderings. II: Generalizations, Mathware
Soft Comput. 15 (2008) 219249.
- L.M. Brown, M. Diker, Ditopological texture spaces and intuitionistic sets Fuzzy Sets and
Syst. 98, (1998) 217224.
- L.M. Brown, R. Ertürk, S. Dost, Ditopological texture spaces and fuzzy topology, I. Basic
concepts, Fuzzy Sets and Syst. 147, (2004) 171199.
- L.M. Brown, R. Ertürk, S. Dost, Ditopological texture spaces and fuzzy topology, II. Topo-
logical considerations, Fuzzy Sets and Syst. 147, (2004) 201231. 18861912.
- L.M. Brown, A. Sostak, Categories of fuzzy topologies in the context of graded ditopologies,
Iranian J. Of Fuzzy Systems, Systems 11, No. 6, (2014) pp. 1-20
- C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182190 (1968)
- K.C. Chattopadhyay, R.N. Nasra, S.K. Samanta, Gradation of openness: Fuzzy topology,
Fuzzy Sets and Syst. 48 (1992), 237242.
- K.C. Chattopadhyay, S.K. Samanta, Fuzzy closure operators, fuzzy compactness and fuzzy
connectedness, Fuzzy Sets and Syst. 54 (1992), 237242.
- P. Chen, D. Zhang, Alexandro L-cotopological spaces, Fuzzy Sets and Systems 161 (2010)
2505 2525.
- M. Demirci, Fuzzy functions and their fundamental properties, Fuzzy Sets Syst. 106 (1999),
239246
- D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets. Internat. J. General Syst. 17,
191209 (1990)
- A. Elkins, A. Sostak, On some categories of approximate systems generated by L-relations.
In: 3rd Rough Sets Theory Workshop, pp. 1419 Milan, Italy (2011)
- A. Elkins, A. Sostak, I. Uljane, On a category of extensional fuzzy rough approximation
L-valued spaces, In: Communication in Computer and Information Science, vol 611 (2016).
16th. International Conference IPMU 2016, Eindhofen, The Netherlands, June 20-24, 2016,
Proceedings, Part II, 36-47.
- G. Gierz, K.H. Homan, K. Keimel, J.D. Lawson, M.W. Mislove, D.S. Scott, Continuous
Lattices and Domains, Cambridge University Press, Cambridge (2003)
- J.A. Goguen, The fuzzy Tychono theorem, J. Math. Anal. Appl. 43, 734742 (1973)
- J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), 145174.
- J. Hao, Q. Li, The relation between L-fuzzy rough sets and L-topology, Fuzzy Sets and
Systems, 178 (2011)
- U. Höhle, M-valued sets and sheaves over integral commutative cl-monoids Chapter 2 in
Applications of Category Theory to Fuzzy Sets, 1992, Kluwer Acad. Press, S.E. Rodabaugh,
E.P. Klement and U. Höhle eds, pp. 3372.
- U. Höhle, Commutative, residuated l-monoids, in: S.E. Rodabaugh, E.P. Klement, U. Höhle
eds., Non-classical logics and their applications to Fuzzy Sets. Kluwer Acad. Publ. Dodrecht,
Boston 1995, pp. 53106.
- U. Höhle, Many-valued equalities, singletons and fuzzy partitions Soft Computing 2 (1998),
134140.
- U. Höhle, Many Valued Topology and its Application Kluwer Acad. Publ. 2001, Boston,
Dodrecht, London.
- J. Järvinen, J. Kortelainen, A unified study between modal-like operators, topologies and
fuzzy sets, Fuzzy Sets and Systems 158 (2007) 12171225.
- F. Klawonn, Fuzzy points, fuzzy relations and fuzzy functions, in: V. Novák, I. Perlieva
(Eds.), Discovering the World with Fuzzy Logic, Springer, Berlin, 2000, pp. 431453.
- E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Acad. Publ., 2000.
- J. Kortelainen, On relationship between modified sets, topological spaces and rough sets,
Fuzzy Sets and Systems 61 (1994) 91-95.
- T. Kubiak, On fuzzy topologies, PhD Thesis, Adam Mickiewicz University Poznan, Poland
(1985)
- Liu Yingming, Luo Maokang, Fuzzy Topology Advances in Fuzzy Systems - Applications
and Topology. World Scientif. Singapore, New Jersey, London, Hong Kong, 1997.
- K. Menger, Probabilistic geometry, Proc. N.A.S. 27 (1951), 226229.
- J.S. Mi, B.Q. Hu Topological and lattice structure of L-fuzzy rough sets determined by upper
and lower sets, Information Sciences 218 (2013) 194204.
- W. Morgan, and R. P. Dilworth Residuated lattices Trans. Amer. Math. Soc. 45 (1939) 335-
354. Reprinted in K.Bogart, R. Freese, and J. Kung eds. The Dilworth Theorems: Selected
Papers of R.P. Dilworth Basel, 1990 Birkhauser.
- Z. Pawlak, Rough sets , International J. of Computer and Information Sciences, 11 (1982)
341-356.
- K. Qin, Z. Pei, On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems
151 (2005) 601613.
- K. Qin, Z. Pei, Generalized rough sets based on reexive and transitive relations, Information
Sciences 178 (2008) 41384141.
- A.M. Radzikowska, E.E. Kerre, A comparative study of fuzzy rough sets. Fuzzy Sets and
Syst. 126, 137155 (2002)
- G.N. Raney, A subdirect-union representation for completely distibutive complete lattices,
Proc. Amer. Math. Soc. 4 (1953), 518522.
- K.I. Rosenthal Quantales and Their Applications, Pirman Research Notes in Mathematics
234. Longman Scientic & Technical (1990)
- B. Schweizer, A. Sklar, Statistical metric spaces, Pacic J. Math. 10, 215229.
- A. Skowron, On the topology in information systems, Bull. Polon. Acad. Sci. Math. 36
(1988), 477480.
- A. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Mat. Palermo Ser II 11
(1985), 89-103
- A. Sostak, Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math.
Surveys, 44 (1989), 125186
- A. Sostak, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), 662701.
- A. Sostak, Fuzzy functions and an extension of the category L-TOP of Chang-Goguen L-
topological spaces, Proceedings of the 9th Prague Topological Symposium (2001), 271294.
- S.P. Tiwari, A.K. Srivastava, Fuzzy rough sets. fuzzy preoders and fuzzy topoloiges, Fuzzy
Sets and Syst., 210 (2013), 6368.
- I. Ul,jane, On the order type L-valued relations on L-powersets, Soft Computing 14 (2007),
183-199.
- L. Valverde, On the structure of F-indistinguishibility operators, Fuzzy Sets and Syst. 17
(1985) 313328.
- A. Wiweger, On topological rough sets, Bull. Polon. Acad. Sci. Math. 37 (1988), 5162.
- H. Yu, W.R. Zhan, On the topological properties of generalized rough sets, Information
Sciences 263 (2014), 141152.
- L. Zadeh, Fuzzy sets, Information and Control (1965)
- L. Zadeh Similarity relations and fuzzy orderings, Inf. Sci. 3 (1971) 177200.