Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses
Yıl 2018,
Cilt: 47 Sayı: 5, 1196 - 1205, 16.10.2018
Akbar Zada
,
Syed Omar Shah
Öz
This paper proves the Hyers-Ulam stability and Hyers-Ulam-Rassias stability of first-order non-linear delay differential equations with fractional integrable impulses. Our approach uses abstract Grönwall lemma together with integral inequality of Grönwall type for piecewise continuous
functions
Kaynakça
- Bainov, D. D. and Dishliev, A., Population dynamics control in regard to minimizing the
time necessary for the regeneration of a biomass taken away from the population, Comp.
Rend. Bulg. Scie. 42(6), 29-32, 1989.
- Bainov, D. D. and Simenov, P. S., Systems with impulse effect stability theory and applica-
tions, Ellis Horwood Limited, Chichester 1989.
- Brzdek, J. and Eghbali, N., On approximate solutions of some delayed fractional differential
equations, Appl. Math. Lett. 54, 31-35, 2016.
- Dishliev, A. and Bainov, D. D., Dependence upon initial conditions and parameters of
solutions of impulsive differential equations with variable structure, Int. J. Theor. Phys.
29(6), 655-676, 1990.
- Gowrisankar, M., Mohankumar, P. and Vinodkumar, A., Stability results of random im-
pulsive semilinear differential equations, Acta Math. Sci. 34(4), 1055-1071, 2014.
- Huang, J., Alqifiary, Q. H. and Li, Y., Superstability of differential equations with boundary
conditions, Elec. J. Diff. Eq. 2014(215), 1-8, 2014.
- Huang, J., Jung, S.-M. and Li, Y., On the Hyers-Ulam stability of non-linear differential equations, Bull. Korean Math. Soc. 52(2), 685-697, 2015.
- Huang, J. and Li, Y., Hyers-Ulam stability of linear functional differential equations, J.
Math. Anal. Appl. 426, 1192-1200, 2015.
- Huang, J. and Li, Y., Hyers-Ulam stability of delay differential equations of first order,
Math. Nachr. 289(1), 60-66, 2016.
- Hyers, D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S.
A. 27(4), 222-224, 1941.
- Jung, S.-M., Hyers-Ulam stability of linear differential equations of first order. III, J. Math.
Anal. Appl. 311, 139-146, 2005.
- Jung, S.-M., Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis,
Springer Optim. Appl., Springer, NewYork 48, 2011.
- Li, Y. and Shen, Y., Hyers-Ulam stability of nonhomogeneous linear differential equations
of second order, Internat. J. Math. Math. Sci. 2009.
- Li, Y. and Shen, Y., Hyers-Ulam stability of linear differential equations of second order,
Appl. Math. Lett. 23, 306-309, 2010.
- Li, T. and Zada, A., Connections between Hyers-Ulam stability and uniform exponential
stability of discrete evolution families of bounded linear operators over Banach spaces, Adv.
Difference Equ. 153, 2016.
- Li, T., Zada, A. and Faisal, S., Hyers-Ulam stability of nth order linear differential equa-
tions, J. Nonlinear Sci. Appl. 9, 2070-2075, 2016.
- Liao, Y. and Wang, J., A note on stability of impulsive differential equations, Bound. Val.
Prob. 67, 2014.
- Lupulescu, V. and Zada, A., Linear impulsive dynamic systems on time scales, Electron. J.
Qual. Theory Diff. Equ. 11, 1-30, 2010.
- Miura, T., Miyajima, S. and Takahasi, S. E., A characterization of Hyers-Ulam stability of
first order linear differential operators, J. Math. Anal. Appl. 286, 136-146, 2003.
- Nenov, S., Impulsive controllability and optimization problems in population dynamics,
Nonl. Anal. 36, 881-890, 1999.
- Obloza, M., Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace
Mat. 259-270, 1993.
- Obloza, M., Connections between Hyers and Lyapunov stability of the ordinary differential
equations, Rocznik Nauk.-Dydakt. Prace Mat. 14, 141-146, 1997.
- Parthasarathy, C., Existence and Hyers-Ulam Stability of nonlinear impulsive differential equations with nonlocal conditions, Elect. Jour. Math. Ana. and Appl. 4(1), 106-117, 2016.
- Popa, D. and Rasa, I., Hyers-Ulam stability of the linear differential operator with noncon-
stant coefficients, Appl. Math. Comp. 219, 1562-1568, 2012.
- Rassias, T. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
Soc. 72, 297-300, 1978.
- Rezaei, H., Jung, S. -M. and Rassias, T. M., Laplace transform and Hyers-Ulam stability
of linear differential equations, J. Math. Anal. Appl. 403, 244-251, 2013.
- Rus, I. A., Gronwall lemmas: ten open problems, Sci. Math. Jpn. 70, 221-228, 2009.
- Samoilenko, A. M. and Perestyuk, N. A., Stability of solutions of differential equations with
impulse effect, Differ. Equ. 13, 1981-1992, 1977.
- Shah, R. and Zada, A., A fixed point approach to the stability of a nonlinear volterra
integrodifferential equations with delay, Hacet. J. Math. Stat. 2017, 47 (3), 615-623, 2018.
- Tang, S., Zada, A., Faisal, S., El-Sheikh, M. M. A. and Li, T., Stability of higher-order
nonlinear impulsive differential equations, J. Nonlinear Sci. Appl. 9, 4713-4721, 2016.
- Ulam, S. M., A collection of the mathematical problems, Interscience, New York, 1960.
- Wang, J., Feckan, M. and Zhou, Y., Ulam's type stability of impulsive ordinary differential
equations, J. Math. Anal. Appl. 395, 258-264, 2012.
- Wang, J., Feckan, M. and Zhou, Y., On the stability of first order impulsive evolution
equations, Opuscula Math. 34, 639-657, 2014.
- Wang, C. and Xu, T. Z., Hyers-Ulam stability of fractional linear differential equations
involving Caputo fractional derivatives, Appl. Math. 60(4), 383-393, 2015.
- Wang, J. and Zhang, Y., A class of nonlinear differential equations with fractional integrable
impulses, Com. Nonl. Sci. Num. Sim. 19, 3001-3010, 2014.
- Xu, B. and Brzdek, J., Hyers-Ulam stability of a system of first order linear recurrences
with constant coefficients, Discrete Dyn. Nat. Soc. 5 pages, 2015.
- Xu, B., Brzdek, J. and Zhang, W., Fixed point results and the Hyers-Ulam stability of linear
equations of higher orders, Pacific J. Math. 273(2), 2015, 483-498.
- Zada, A., Ali, W. and Farina, S., Hyers-Ulam stability of nonlinear differential equations
with fractional integrable impulses, Math. Methods Appl. Sci., 40, 5502-5514, 2017.
- Zada, A., Faisal, S. and Li, Y., On the Hyers-Ulam stability of first-order impulsive delay
differential equations, J. Funct. Spaces , 6 pages, 2016.
- Zada, A., Faisal, S. and Li, Y., Hyers-Ulam-Rassias stability of non-linear delay differential
equations, J. Nonlinear Sci. Appl. 10, 504-510, 2017.
- Zada, A., Khan, F. U., Riaz, U. and Li, T., Hyers-Ulam stability of linear summation
equations, Punjab U. J. Math. 49(1), 19-24, 2017.
- Zada, A., Shah, O. and Shah, R., Hyers-Ulam stability of non-autonomous systems in
terms of boundedness of Cauchy problems, Appl. Math. Comput. 271, 512-518, 2015.
Yıl 2018,
Cilt: 47 Sayı: 5, 1196 - 1205, 16.10.2018
Akbar Zada
,
Syed Omar Shah
Kaynakça
- Bainov, D. D. and Dishliev, A., Population dynamics control in regard to minimizing the
time necessary for the regeneration of a biomass taken away from the population, Comp.
Rend. Bulg. Scie. 42(6), 29-32, 1989.
- Bainov, D. D. and Simenov, P. S., Systems with impulse effect stability theory and applica-
tions, Ellis Horwood Limited, Chichester 1989.
- Brzdek, J. and Eghbali, N., On approximate solutions of some delayed fractional differential
equations, Appl. Math. Lett. 54, 31-35, 2016.
- Dishliev, A. and Bainov, D. D., Dependence upon initial conditions and parameters of
solutions of impulsive differential equations with variable structure, Int. J. Theor. Phys.
29(6), 655-676, 1990.
- Gowrisankar, M., Mohankumar, P. and Vinodkumar, A., Stability results of random im-
pulsive semilinear differential equations, Acta Math. Sci. 34(4), 1055-1071, 2014.
- Huang, J., Alqifiary, Q. H. and Li, Y., Superstability of differential equations with boundary
conditions, Elec. J. Diff. Eq. 2014(215), 1-8, 2014.
- Huang, J., Jung, S.-M. and Li, Y., On the Hyers-Ulam stability of non-linear differential equations, Bull. Korean Math. Soc. 52(2), 685-697, 2015.
- Huang, J. and Li, Y., Hyers-Ulam stability of linear functional differential equations, J.
Math. Anal. Appl. 426, 1192-1200, 2015.
- Huang, J. and Li, Y., Hyers-Ulam stability of delay differential equations of first order,
Math. Nachr. 289(1), 60-66, 2016.
- Hyers, D. H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S.
A. 27(4), 222-224, 1941.
- Jung, S.-M., Hyers-Ulam stability of linear differential equations of first order. III, J. Math.
Anal. Appl. 311, 139-146, 2005.
- Jung, S.-M., Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis,
Springer Optim. Appl., Springer, NewYork 48, 2011.
- Li, Y. and Shen, Y., Hyers-Ulam stability of nonhomogeneous linear differential equations
of second order, Internat. J. Math. Math. Sci. 2009.
- Li, Y. and Shen, Y., Hyers-Ulam stability of linear differential equations of second order,
Appl. Math. Lett. 23, 306-309, 2010.
- Li, T. and Zada, A., Connections between Hyers-Ulam stability and uniform exponential
stability of discrete evolution families of bounded linear operators over Banach spaces, Adv.
Difference Equ. 153, 2016.
- Li, T., Zada, A. and Faisal, S., Hyers-Ulam stability of nth order linear differential equa-
tions, J. Nonlinear Sci. Appl. 9, 2070-2075, 2016.
- Liao, Y. and Wang, J., A note on stability of impulsive differential equations, Bound. Val.
Prob. 67, 2014.
- Lupulescu, V. and Zada, A., Linear impulsive dynamic systems on time scales, Electron. J.
Qual. Theory Diff. Equ. 11, 1-30, 2010.
- Miura, T., Miyajima, S. and Takahasi, S. E., A characterization of Hyers-Ulam stability of
first order linear differential operators, J. Math. Anal. Appl. 286, 136-146, 2003.
- Nenov, S., Impulsive controllability and optimization problems in population dynamics,
Nonl. Anal. 36, 881-890, 1999.
- Obloza, M., Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace
Mat. 259-270, 1993.
- Obloza, M., Connections between Hyers and Lyapunov stability of the ordinary differential
equations, Rocznik Nauk.-Dydakt. Prace Mat. 14, 141-146, 1997.
- Parthasarathy, C., Existence and Hyers-Ulam Stability of nonlinear impulsive differential equations with nonlocal conditions, Elect. Jour. Math. Ana. and Appl. 4(1), 106-117, 2016.
- Popa, D. and Rasa, I., Hyers-Ulam stability of the linear differential operator with noncon-
stant coefficients, Appl. Math. Comp. 219, 1562-1568, 2012.
- Rassias, T. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math.
Soc. 72, 297-300, 1978.
- Rezaei, H., Jung, S. -M. and Rassias, T. M., Laplace transform and Hyers-Ulam stability
of linear differential equations, J. Math. Anal. Appl. 403, 244-251, 2013.
- Rus, I. A., Gronwall lemmas: ten open problems, Sci. Math. Jpn. 70, 221-228, 2009.
- Samoilenko, A. M. and Perestyuk, N. A., Stability of solutions of differential equations with
impulse effect, Differ. Equ. 13, 1981-1992, 1977.
- Shah, R. and Zada, A., A fixed point approach to the stability of a nonlinear volterra
integrodifferential equations with delay, Hacet. J. Math. Stat. 2017, 47 (3), 615-623, 2018.
- Tang, S., Zada, A., Faisal, S., El-Sheikh, M. M. A. and Li, T., Stability of higher-order
nonlinear impulsive differential equations, J. Nonlinear Sci. Appl. 9, 4713-4721, 2016.
- Ulam, S. M., A collection of the mathematical problems, Interscience, New York, 1960.
- Wang, J., Feckan, M. and Zhou, Y., Ulam's type stability of impulsive ordinary differential
equations, J. Math. Anal. Appl. 395, 258-264, 2012.
- Wang, J., Feckan, M. and Zhou, Y., On the stability of first order impulsive evolution
equations, Opuscula Math. 34, 639-657, 2014.
- Wang, C. and Xu, T. Z., Hyers-Ulam stability of fractional linear differential equations
involving Caputo fractional derivatives, Appl. Math. 60(4), 383-393, 2015.
- Wang, J. and Zhang, Y., A class of nonlinear differential equations with fractional integrable
impulses, Com. Nonl. Sci. Num. Sim. 19, 3001-3010, 2014.
- Xu, B. and Brzdek, J., Hyers-Ulam stability of a system of first order linear recurrences
with constant coefficients, Discrete Dyn. Nat. Soc. 5 pages, 2015.
- Xu, B., Brzdek, J. and Zhang, W., Fixed point results and the Hyers-Ulam stability of linear
equations of higher orders, Pacific J. Math. 273(2), 2015, 483-498.
- Zada, A., Ali, W. and Farina, S., Hyers-Ulam stability of nonlinear differential equations
with fractional integrable impulses, Math. Methods Appl. Sci., 40, 5502-5514, 2017.
- Zada, A., Faisal, S. and Li, Y., On the Hyers-Ulam stability of first-order impulsive delay
differential equations, J. Funct. Spaces , 6 pages, 2016.
- Zada, A., Faisal, S. and Li, Y., Hyers-Ulam-Rassias stability of non-linear delay differential
equations, J. Nonlinear Sci. Appl. 10, 504-510, 2017.
- Zada, A., Khan, F. U., Riaz, U. and Li, T., Hyers-Ulam stability of linear summation
equations, Punjab U. J. Math. 49(1), 19-24, 2017.
- Zada, A., Shah, O. and Shah, R., Hyers-Ulam stability of non-autonomous systems in
terms of boundedness of Cauchy problems, Appl. Math. Comput. 271, 512-518, 2015.