Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 47 Sayı: 6, 1417 - 1426, 12.12.2018

Öz

Kaynakça

  • Alizade, R., Bilhan, G., and Smith, P. F. Modules whose maximal submodules have supplements. Communications in Algebra, 29(6):2389-2405, 2001.
  • Anderson, F. and Fuller, K. Rings and Categories of Modules. Springer, 1992.
  • Büyükaşık, E. and Lomp, C. Rings whose modules are weakly supplemented are perfect. applications to certain ring extensions. Mathematica Scandinavica, 105:25-30, 2009.
  • Çalışıcı, H. and Pancar, A. $\oplus$-cofinitely supplemented modules. Czechoslovak Mathematical Journal, 54(129):1083-1088, 2004.
  • Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R. Lifting Modules. Birkhäuser Verlag, 2006.
  • Fuchs, L. Infinite Abelian Groups, Vol. I. New York: Academic Press, 1970.
  • Idelhadj, A. and Tribak, R. A dual notion of cs-modules generalization. Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 208:149155, 2000.
  • Idelhadj, A. and Tribak, R. On some properties of $\oplus$-supplemented modules. International Journal of Mathematics and Mathematical Sciences, 69:4373-4387, 2003.
  • Kasch, F. Modules and Rings. London Mathematical Society, 1982.
  • Keskin, D., Harmancı, A., and Smith, P. F. On $\oplus$-supplemented modules. Acta Mathematica Hungaria, 83(1-2):161-169, 1999.
  • Keskin, D., Smith, P. F., and Xue, W. Rings whose modules are $\oplus$-supplemented. Journal of Algebra, 218:470-487, 1999.
  • Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules. London Mathematical Society Lecture Notes Series, Cambridge Univ. Press, Cambridge, UK, 1990.
  • Wang, Y. and Sun, Q. A note on $\oplus$-cofinitely supplemented modules. International Journal of Mathematics and Mathematical Sciences, 2007:108-365 pages, 2007.
  • Warfield Jr., R. B. Decomposability of finitely presented modules. Proceedings of the American Mathematical Society, 25(1):167172, 1970.
  • Wisbauer, R. Foundations of Modules and Rings. Gordon and Breach, 1991.
  • Zöschinger, H. Komplementierte moduln über dedekindringen. Journal of Algebra, 29:42-56, 1974.
  • Zöschinger, H. Moduln die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, 35:267-287, 1974.
  • Zöschinger, H. and Rosenberg, F. A. Koatomare moduln. Mathematische Zeitschrift, 170(3):221-232, 1980.

$\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules

Yıl 2018, Cilt: 47 Sayı: 6, 1417 - 1426, 12.12.2018

Öz

In  this paper it is shown that a factor module of an $\oplus$-co-coatomically supplemented module is not in general $\oplus$-co-coatomically supplemented. If $M$ is $\oplus$-co-coatomically supplemented and $U$ is a fully invariant submodule of $M$, then $M/U$ is $\oplus$-co-coatomically supplemented. A ring $R$ is left perfect if and only if $R^{(\mathbb{N})}$ is an $\oplus$-co-coatomically supplemented $R$-module. A projective module $M$ is co-coatomically semiperfect if and only if $M$ is $\oplus$-co-coatomically supplemented. A ring is semiperfect if and only if every finitely generated free $R$-module is co-coatomically semiperfect.

Kaynakça

  • Alizade, R., Bilhan, G., and Smith, P. F. Modules whose maximal submodules have supplements. Communications in Algebra, 29(6):2389-2405, 2001.
  • Anderson, F. and Fuller, K. Rings and Categories of Modules. Springer, 1992.
  • Büyükaşık, E. and Lomp, C. Rings whose modules are weakly supplemented are perfect. applications to certain ring extensions. Mathematica Scandinavica, 105:25-30, 2009.
  • Çalışıcı, H. and Pancar, A. $\oplus$-cofinitely supplemented modules. Czechoslovak Mathematical Journal, 54(129):1083-1088, 2004.
  • Clark, J., Lomp, C., Vanaja, N., and Wisbauer, R. Lifting Modules. Birkhäuser Verlag, 2006.
  • Fuchs, L. Infinite Abelian Groups, Vol. I. New York: Academic Press, 1970.
  • Idelhadj, A. and Tribak, R. A dual notion of cs-modules generalization. Algebra and Number Theory, Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 208:149155, 2000.
  • Idelhadj, A. and Tribak, R. On some properties of $\oplus$-supplemented modules. International Journal of Mathematics and Mathematical Sciences, 69:4373-4387, 2003.
  • Kasch, F. Modules and Rings. London Mathematical Society, 1982.
  • Keskin, D., Harmancı, A., and Smith, P. F. On $\oplus$-supplemented modules. Acta Mathematica Hungaria, 83(1-2):161-169, 1999.
  • Keskin, D., Smith, P. F., and Xue, W. Rings whose modules are $\oplus$-supplemented. Journal of Algebra, 218:470-487, 1999.
  • Mohamed, S. H. and Müller, B. J. Continuous and Discrete Modules. London Mathematical Society Lecture Notes Series, Cambridge Univ. Press, Cambridge, UK, 1990.
  • Wang, Y. and Sun, Q. A note on $\oplus$-cofinitely supplemented modules. International Journal of Mathematics and Mathematical Sciences, 2007:108-365 pages, 2007.
  • Warfield Jr., R. B. Decomposability of finitely presented modules. Proceedings of the American Mathematical Society, 25(1):167172, 1970.
  • Wisbauer, R. Foundations of Modules and Rings. Gordon and Breach, 1991.
  • Zöschinger, H. Komplementierte moduln über dedekindringen. Journal of Algebra, 29:42-56, 1974.
  • Zöschinger, H. Moduln die in jeder erweiterung ein komplement haben. Mathematica Scandinavica, 35:267-287, 1974.
  • Zöschinger, H. and Rosenberg, F. A. Koatomare moduln. Mathematische Zeitschrift, 170(3):221-232, 1980.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Rafail Alizade

Serpil Güngör Bu kişi benim

Yayımlanma Tarihi 12 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 47 Sayı: 6

Kaynak Göster

APA Alizade, R., & Güngör, S. (2018). $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics, 47(6), 1417-1426.
AMA Alizade R, Güngör S. $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics. Aralık 2018;47(6):1417-1426.
Chicago Alizade, Rafail, ve Serpil Güngör. “$\oplus$-Co-Coatomically Supplemented and Co-Coatomically Semiperfect Modules”. Hacettepe Journal of Mathematics and Statistics 47, sy. 6 (Aralık 2018): 1417-26.
EndNote Alizade R, Güngör S (01 Aralık 2018) $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics 47 6 1417–1426.
IEEE R. Alizade ve S. Güngör, “$\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules”, Hacettepe Journal of Mathematics and Statistics, c. 47, sy. 6, ss. 1417–1426, 2018.
ISNAD Alizade, Rafail - Güngör, Serpil. “$\oplus$-Co-Coatomically Supplemented and Co-Coatomically Semiperfect Modules”. Hacettepe Journal of Mathematics and Statistics 47/6 (Aralık 2018), 1417-1426.
JAMA Alizade R, Güngör S. $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics. 2018;47:1417–1426.
MLA Alizade, Rafail ve Serpil Güngör. “$\oplus$-Co-Coatomically Supplemented and Co-Coatomically Semiperfect Modules”. Hacettepe Journal of Mathematics and Statistics, c. 47, sy. 6, 2018, ss. 1417-26.
Vancouver Alizade R, Güngör S. $\oplus$-co-coatomically supplemented and co-coatomically semiperfect modules. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1417-26.