On the weak solutions and determining modes of the g-Benard problem
Year 2018,
Volume: 47 Issue: 6, 1453 - 1466, 12.12.2018
Muharrem Özlük
Meryem Kaya
Abstract
In this paper we study the existence and uniqueness of weak solutions of the g-Benard problem. Then, we investigate the long-term dynamics; specifically, we derive upper bounds for the number of determining modes for this system.
References
- Bae, H., Roh, J., Existence of Solutions of the g-Navier-Stokes Equations, Taiwanese J. Math., 8, No. 1, 85-102, 2004.
- Boland, J. and Layton, W., Error analysis for finite element methods for steady natural convection problems, Numer. Funct. Anal. Optim., 11:5-6, 449-483, 1990, DOI: 10.1080/01630569008816383.
- Galdi,G.P., Lectures in Mathematical Fluid Dynamics, Birkhauser-Verlag, 2000.
- Farhat, A., Jolly, M.S., and Titi, E.S., Continuous Data Assimilation for the 2D Benard Convection Through Velocity Measurements Alone, Physica D, 303, 59-66, 2015.
- Foias, C., Jolly, M.S., Kravchenko, R., and Titi, E.S., A unified approach to determining forms for the 2D Navier-Stokes equations -- the general interpolants case, Russ. Math. Surv., 69, No. 2, 359-381, 2014.
- Foias, C., Manley, O., Rosa, R. and Temam, R., Navier - Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, 2004.
- Foias, C., Manley, O., Temam, R., Attractors for the Benard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal. Theory, Methods & Applications, 11, 939-967, 1987.
- Foias, C., Prodi, G., Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension two, Rend. Sem. Mat. Univ., Padova, 39, 1-34, 1967.
- Hale, J.K., Raugel, G., A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329, 185-219, 1992.
- Hale, J.K., Raugel, G., Partial differential equations on thin domains, Differ. Eq. Math. Phys., Birmingham, AL, 1990, Academic Press, Boston, 63-97, 1992.
- Hale, J. K., Raugel, G., Reaction - Diffusion equation on thin domains, J. Math. Pures Appl., 71, 33-95, 1992.
- Hoang, L.T., Incompressible Fluids in Thin Domains with Navier Friction
Boundary Conditions (I), J. Math. Fluid Mech., 12, No. 3, 435-472, 2010.
- Hoang, L.T., Incompressible Fluids in Thin Domains with Navier Friction
Boundary Conditions (II), J. Math. Fluid Mech., 15, 361-395, 2013.
- Hu, C., Navier-Stokes equations in 3D thin domains with Navier friction boundary condition, J. Differ. Equ., 236, No. 1, 133-163, 2007.
- Hu, C., Global strong solutions of Navier-Stokes equations with interface boundary in three-dimensional thin domains, Nonlinear Anal. 74, No. 12, 3964-3997, 2011.
- Iftimie, D., The 3D Navier - Stokes equations seen as a perturbation of the 2D Navier - Stokes equations, Bull. Soc. Math., France, 127, 473-517, 1999.
- Iftimie, D. and Raugel, G., Some results on the Navier-Stokes equations in thin 3D domains, J. Differ. Equ., 169, 281-331, 2001.
- Iftimie, D., Raugel, G., Sell, G.R., Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J., 56, No. 3, 1083-1156, 2007.
- Jones, D.A., and Titi, E.S., Determination of the solutions of the Navier - Stokes equations by finite volume elements, Phys. D, 60, 165-174, 1992.
- Jones, D., Titi, E.S., Upper bounds on the number of determining modes, nodes, and volume elements for the Navier - Stokes equations, Indiana Univ. Math. J., 42, No. 3, 875-887, 1993.
- Kagei, Y., On weak solutions of nonstationary Boussinesq equations, Diff. Integral Equ., 6, 587-611, 1993.
- Kapustyan, O.V., Melnik, V.S., Valero, J., A weak attractor and properties of solutions for the three-dimensional Benard problem, Discr. Contin. Dyn. Syst. Ser. A, 18, 449-481, 2007.
- Kapustyan, O.V., Pankov, A.V., Global $\varphi$-attractor for a modified 3D Benard system on channel-like domains, Nonauton. Dyn. Syst., 1, Issue 1, 1-9, 2014.
- Kapustyan, O.V., Pankov, A.V., Valero, J., On global attractors of multivalued semiflows generated by the 3D Benard system, Set-Valued and Variat. Anal., 20, 445-465, 2012.
- Kaya, M. and Çelebi, A.O., Existence of weak solutions of the g-Kelvin-Voight equation, Math. Comput. Modelling, 49, 497-504, 2009.
- Kaya, M. and Çelebi, A.O., Global attractor for the regularized Benard problem, Appl. Anal., 93, Issue 9, 1989-2001, 2014.
- Ladyzhenskaya O.A., The Mathematical Theory of Viscous Incompressible Flow, 2nd Edition, Gordon and Breach, New York, 1969.
- Moise, I., Temam, R., Ziane, M., Asymptotic analysis of the Navier - Stokes equations in thin domains, Topol. Methods Nonlinear Anal., 10, 249-282, 1997.
- Montgomery, S., Global regularity of the Navier-Stokes equations on thin three-dimensional domains with periodic boundary conditions, Electron. J. Differ. Equ., 11, 1-19, 1999.
- Morimoto, H., Non-stationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 9, 61-75, 1992.
- Olson, E., Titi, E.S., Determining modes for continuous data assimilation in 2D turbulence, J. Stat. Physics, 113, No.516, 799-840, 2003.
- Olson, E., Titi, E.S., Determining modes and Grashof number in 2D turbulence: a numerical case study, Theor. Comput. Fluid Dyn., 22, Issue 5, 327-339, 2008.
- Raugel, G., Sell, G.R., Navier - Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6, 503-568, 1993.
- Raugel, G., Sell, G.R., Navier - Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions, Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, vol. XI, Longman, Harlow, , 205-247, 1994.
- Roh, J., g-Navier-Stokes equations, Thesis, University of Minnesota, 2001.
- Roh, J., Dynamics of the g-Navier-Stokes equations, J. Differ. Equ., 211, No. 2, 452-484, 2005.
- Roh, J., Geometry of $L^2(\Omega,g)$, J. Chungcheong Math. Soc., 19, No.3, 283-289, 2006.
- Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 41, SIAM, Philadelphia, 1983.
- Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and Its Applications, North-Holland, Amsterdam, The Netherlands, 3rd edition, 1984.
- Temam, R. and Ziane, M., Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differ. Equ., 1, 499-546, 1996.
- Temam, R. and Ziane, M., Navier-Stokes equations in thin spherical domains, Contemp. Math., 209, 281-314, 1997.
- Wu, D., On the Dimension of the Pullback Attractors for g-Navier-Stokes Equations, Discrete Dyn. Nature Soc., 2010, Article ID 893240, 16 pages.
Year 2018,
Volume: 47 Issue: 6, 1453 - 1466, 12.12.2018
Muharrem Özlük
Meryem Kaya
References
- Bae, H., Roh, J., Existence of Solutions of the g-Navier-Stokes Equations, Taiwanese J. Math., 8, No. 1, 85-102, 2004.
- Boland, J. and Layton, W., Error analysis for finite element methods for steady natural convection problems, Numer. Funct. Anal. Optim., 11:5-6, 449-483, 1990, DOI: 10.1080/01630569008816383.
- Galdi,G.P., Lectures in Mathematical Fluid Dynamics, Birkhauser-Verlag, 2000.
- Farhat, A., Jolly, M.S., and Titi, E.S., Continuous Data Assimilation for the 2D Benard Convection Through Velocity Measurements Alone, Physica D, 303, 59-66, 2015.
- Foias, C., Jolly, M.S., Kravchenko, R., and Titi, E.S., A unified approach to determining forms for the 2D Navier-Stokes equations -- the general interpolants case, Russ. Math. Surv., 69, No. 2, 359-381, 2014.
- Foias, C., Manley, O., Rosa, R. and Temam, R., Navier - Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, vol. 83, Cambridge University Press, 2004.
- Foias, C., Manley, O., Temam, R., Attractors for the Benard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal. Theory, Methods & Applications, 11, 939-967, 1987.
- Foias, C., Prodi, G., Sur le comportement global des solutions non stationnaires des equations de Navier-Stokes en dimension two, Rend. Sem. Mat. Univ., Padova, 39, 1-34, 1967.
- Hale, J.K., Raugel, G., A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329, 185-219, 1992.
- Hale, J.K., Raugel, G., Partial differential equations on thin domains, Differ. Eq. Math. Phys., Birmingham, AL, 1990, Academic Press, Boston, 63-97, 1992.
- Hale, J. K., Raugel, G., Reaction - Diffusion equation on thin domains, J. Math. Pures Appl., 71, 33-95, 1992.
- Hoang, L.T., Incompressible Fluids in Thin Domains with Navier Friction
Boundary Conditions (I), J. Math. Fluid Mech., 12, No. 3, 435-472, 2010.
- Hoang, L.T., Incompressible Fluids in Thin Domains with Navier Friction
Boundary Conditions (II), J. Math. Fluid Mech., 15, 361-395, 2013.
- Hu, C., Navier-Stokes equations in 3D thin domains with Navier friction boundary condition, J. Differ. Equ., 236, No. 1, 133-163, 2007.
- Hu, C., Global strong solutions of Navier-Stokes equations with interface boundary in three-dimensional thin domains, Nonlinear Anal. 74, No. 12, 3964-3997, 2011.
- Iftimie, D., The 3D Navier - Stokes equations seen as a perturbation of the 2D Navier - Stokes equations, Bull. Soc. Math., France, 127, 473-517, 1999.
- Iftimie, D. and Raugel, G., Some results on the Navier-Stokes equations in thin 3D domains, J. Differ. Equ., 169, 281-331, 2001.
- Iftimie, D., Raugel, G., Sell, G.R., Navier-Stokes equations in thin 3D domains with Navier boundary conditions, Indiana Univ. Math. J., 56, No. 3, 1083-1156, 2007.
- Jones, D.A., and Titi, E.S., Determination of the solutions of the Navier - Stokes equations by finite volume elements, Phys. D, 60, 165-174, 1992.
- Jones, D., Titi, E.S., Upper bounds on the number of determining modes, nodes, and volume elements for the Navier - Stokes equations, Indiana Univ. Math. J., 42, No. 3, 875-887, 1993.
- Kagei, Y., On weak solutions of nonstationary Boussinesq equations, Diff. Integral Equ., 6, 587-611, 1993.
- Kapustyan, O.V., Melnik, V.S., Valero, J., A weak attractor and properties of solutions for the three-dimensional Benard problem, Discr. Contin. Dyn. Syst. Ser. A, 18, 449-481, 2007.
- Kapustyan, O.V., Pankov, A.V., Global $\varphi$-attractor for a modified 3D Benard system on channel-like domains, Nonauton. Dyn. Syst., 1, Issue 1, 1-9, 2014.
- Kapustyan, O.V., Pankov, A.V., Valero, J., On global attractors of multivalued semiflows generated by the 3D Benard system, Set-Valued and Variat. Anal., 20, 445-465, 2012.
- Kaya, M. and Çelebi, A.O., Existence of weak solutions of the g-Kelvin-Voight equation, Math. Comput. Modelling, 49, 497-504, 2009.
- Kaya, M. and Çelebi, A.O., Global attractor for the regularized Benard problem, Appl. Anal., 93, Issue 9, 1989-2001, 2014.
- Ladyzhenskaya O.A., The Mathematical Theory of Viscous Incompressible Flow, 2nd Edition, Gordon and Breach, New York, 1969.
- Moise, I., Temam, R., Ziane, M., Asymptotic analysis of the Navier - Stokes equations in thin domains, Topol. Methods Nonlinear Anal., 10, 249-282, 1997.
- Montgomery, S., Global regularity of the Navier-Stokes equations on thin three-dimensional domains with periodic boundary conditions, Electron. J. Differ. Equ., 11, 1-19, 1999.
- Morimoto, H., Non-stationary Boussinesq equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math, 9, 61-75, 1992.
- Olson, E., Titi, E.S., Determining modes for continuous data assimilation in 2D turbulence, J. Stat. Physics, 113, No.516, 799-840, 2003.
- Olson, E., Titi, E.S., Determining modes and Grashof number in 2D turbulence: a numerical case study, Theor. Comput. Fluid Dyn., 22, Issue 5, 327-339, 2008.
- Raugel, G., Sell, G.R., Navier - Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc., 6, 503-568, 1993.
- Raugel, G., Sell, G.R., Navier - Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions, Nonlinear Partial Differential Equations and Their Applications, College de France Seminar, vol. XI, Longman, Harlow, , 205-247, 1994.
- Roh, J., g-Navier-Stokes equations, Thesis, University of Minnesota, 2001.
- Roh, J., Dynamics of the g-Navier-Stokes equations, J. Differ. Equ., 211, No. 2, 452-484, 2005.
- Roh, J., Geometry of $L^2(\Omega,g)$, J. Chungcheong Math. Soc., 19, No.3, 283-289, 2006.
- Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 41, SIAM, Philadelphia, 1983.
- Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, vol. 2 of Studies in Mathematics and Its Applications, North-Holland, Amsterdam, The Netherlands, 3rd edition, 1984.
- Temam, R. and Ziane, M., Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differ. Equ., 1, 499-546, 1996.
- Temam, R. and Ziane, M., Navier-Stokes equations in thin spherical domains, Contemp. Math., 209, 281-314, 1997.
- Wu, D., On the Dimension of the Pullback Attractors for g-Navier-Stokes Equations, Discrete Dyn. Nature Soc., 2010, Article ID 893240, 16 pages.