Research Article
BibTex RIS Cite
Year 2018, Volume: 47 Issue: 6, 1478 - 1494, 12.12.2018

Abstract

References

  • Abuteen, E., Momani, S. and Alawneh, A. Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method, Comput. Math. Appl., 68 (12), 2124-2132, 2014.
  • Alipour, M., Beghin, L. and Rostamy, D. Generalized Fractional Nonlinear Birth Processes, Methodol. Comput. Appl. Probab., 1-16, 2013.
  • Allen, L. J. and Driessche, P. Stochastic epidemic models with a backward bifurcation, Math. Biosci. Eng., 3 (3), 445-458, 2006. Anguelov, R., Garba, S. M. and Usaini, S. Backward bifurcation analysis of epidemiological model with partial immunity, Comput. Math. Appl., 68 (9), 931-940, 2014.
  • Ansari, M. A, Arora, D. and Ansari, S. P. Chaos control and synchronization of fractional order delay-varying computer virus propagation model, Math. Methods Appl. Sci., Jan 1, 2015.
  • Arino, J., McCluske, C. C. and van den Driessche P. Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (1), 260-276, 2003.
  • Boguna, M., Lafuerza, L. F., Toral, R. and Serrano, M. A. Simulating non-Markovian stochastic processes, Phys. Rev. E, 90 (4), 042108, 2014.
  • Caputo, M. Linear model of dissipation whose Q is almost frequency independent-II, Geophysical J. International, 3 (5), 529-539, 1967.
  • Demirci, E. and Ozalp, N., A method for solving differential equations of fractional order. J. Comput. Appl. Math., 236(11), 2754-2762, 2012.
  • Demirci, E., Unal, A. and Ozalp, N., A Fractional Order SEIR Model with Density Dependent Death Rate, Hacet. J. Math. Stat., 40(2), 2011.
  • Ding, Y. and Ye, H. A fractional-order differential equation model of HIV infection of CD4$+$ T-cells, Math. Comput. Modelling, 50 (3), 386-392, 2009.
  • Duan, X., Yuan, S., Qiu, Z. and Ma, J. Global stability of an SVEIR epidemic model with ages of vaccination and latency, Comput. Math. Appl., 68 (3), 288-308, 2014.
  • Erturk, V., Momani, S. and Odibat, Z. Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 13 (8), 1642–1654, 2008.
  • Erturk, V., Odibat, Z. and Momani, S. An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells, Comput. Math. Appl., 62, 992–1002, 2011.
  • Erturk, V. S., Zaman, G. and Momani, S. A numeric–analytic method for approximating a giving up smoking model containing fractional derivatives, Comput. Math. Appl., 64 (10), 3065-3074, 2012.
  • Frederico, G. S. F. and Torres, D. F. M. Fractional Noether’s theorem in the Riesz–Caputo sense, Appl. Math. Comput., 217 (3), 1023-1033, 2010.
  • Hanert, E., Schumacher, E. and Deleersnijder, E. Front dynamics in fractional-order epidemic models, J. Theoret. Biol., 279 (1), 9-16, 2011.
  • Hethcote, H. W. An age-structured model for pertussis transmission, Math. Biosci., 145 (2), 89-136, 1997. Hethcote, H. W. The mathematics of infectious diseases, SIAM review, 42 (4), 599-653, 2000.
  • Kermack, W. O. and McKendrick, A. G. Contributions to the mathematical theory of epidemics—I, Bull. Math. Biol., 53 (1), 33-55, 1991.
  • Kribs-Zaleta, C. M., Velasco-Hernandez and J. X. A simple vaccination model with multiple endemic states, Math. Biosci., 164, 183-201, 2000.
  • Lakshmikantham, V., Theory of fractional dynamic systems, Cambridge Scientifc Publ, 2009.
  • Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M.,R. and Ilmoniemi, J. Long-range temporal correlations and scaling behavior in human brain oscillations, J. Neuroscience, 21 (4), 1370-1377, 2001.
  • Matignon, D. Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2, 963-968, 1996.
  • Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York 1993.
  • Odibat, Z., Bertelle, C., Aziz-Alaoui, M.A., Duchamp and G. A multi-step differential transform method and application to non-chaotic or chaotic systems, Comput. Math. Appl., 59 (4), 1462–1472, 2010.
  • Odibat, Z., Momani,S. and Erturk, V. Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2), 467–477, 2008.
  • Ozalp, N. and Demirci, E., A fractional order SEIR model with vertical transmission, Math. Comput. Modelling, 54 (1), 1-6, 2011.
  • Peng, C. K., Havlin, S., Stanley, H. E. and Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 5 (1), 82-87, 1995.
  • Podlubny, I. Fractional Differential Equations, Academic Press, San Diego, 1999.
  • Porco, T. C. and Blower, S. M. Designing HIV vaccination policies: subtypes and cross-immunity, Interfaces, 28 (3), 167-190, 1998.
  • Safdari, H., Kamali, M. Z., Shirazi, A. H., Khaliqi, M., Jafari, G. History effects on network growth, arXiv preprint, 2015, arXiv:1505.06450.
  • Van Mieghem, P. and Van de Bovenkamp, R. Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks, Phys. Rev. Lett., 110 (10), 108701, 2013.
  • Wang, P. Y., Lin, S. D. and Srivastava, H. M. Remarks on a simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications, Comput. Math. Appl., 51 (1), 105-114, 2006.
  • Yulmetyev, R. M., Emelyanova, N. A., Demin, S. A., Gafarov, F. M., Hanggi, P. and Yulmetyeva, D. G. Non-Markov stochastic dynamics of real epidemic process of respiratory infections, Phys. A, 331 (1), 300-318, 2004.
  • Zeng, G.Z., Chen, L.S. and Sun, L.H. Complexity of an SIR epidemic dynamics model with impulsive vaccination control, Chaos, Solitons \& Fractals, 26 (2), 495-505, 2005.

Numerical solution and stability analysis of a nonlinear vaccination model with historical effects

Year 2018, Volume: 47 Issue: 6, 1478 - 1494, 12.12.2018

Abstract

In this paper, we extend the classical vaccination epidemic model from a deterministic framework to a model with historical effects by formulating it as a system of fractional-order differential equations (FDEs). The basic reproduction number $R_0$ of the resulting fractional model is computed and it is shown that if $R_0$ is less than one, the disease-free equilibrium is locally asymptotically stable. Particularly, we analytically calculate a certain threshold-value for $R_0$ and present the existence conditions of endemic equilibrium. By using stability analysis, we prove stability and $\alpha$-stability of the endemic equilibrium points. The proposed model is applied on \emph{Pertussis} disease and the fractional nonlinear system of the model is solved by applying multi-step generalized differential transform method (MSGDTM). Our results show that historical effects play an important role on the disease spreading.

References

  • Abuteen, E., Momani, S. and Alawneh, A. Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method, Comput. Math. Appl., 68 (12), 2124-2132, 2014.
  • Alipour, M., Beghin, L. and Rostamy, D. Generalized Fractional Nonlinear Birth Processes, Methodol. Comput. Appl. Probab., 1-16, 2013.
  • Allen, L. J. and Driessche, P. Stochastic epidemic models with a backward bifurcation, Math. Biosci. Eng., 3 (3), 445-458, 2006. Anguelov, R., Garba, S. M. and Usaini, S. Backward bifurcation analysis of epidemiological model with partial immunity, Comput. Math. Appl., 68 (9), 931-940, 2014.
  • Ansari, M. A, Arora, D. and Ansari, S. P. Chaos control and synchronization of fractional order delay-varying computer virus propagation model, Math. Methods Appl. Sci., Jan 1, 2015.
  • Arino, J., McCluske, C. C. and van den Driessche P. Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (1), 260-276, 2003.
  • Boguna, M., Lafuerza, L. F., Toral, R. and Serrano, M. A. Simulating non-Markovian stochastic processes, Phys. Rev. E, 90 (4), 042108, 2014.
  • Caputo, M. Linear model of dissipation whose Q is almost frequency independent-II, Geophysical J. International, 3 (5), 529-539, 1967.
  • Demirci, E. and Ozalp, N., A method for solving differential equations of fractional order. J. Comput. Appl. Math., 236(11), 2754-2762, 2012.
  • Demirci, E., Unal, A. and Ozalp, N., A Fractional Order SEIR Model with Density Dependent Death Rate, Hacet. J. Math. Stat., 40(2), 2011.
  • Ding, Y. and Ye, H. A fractional-order differential equation model of HIV infection of CD4$+$ T-cells, Math. Comput. Modelling, 50 (3), 386-392, 2009.
  • Duan, X., Yuan, S., Qiu, Z. and Ma, J. Global stability of an SVEIR epidemic model with ages of vaccination and latency, Comput. Math. Appl., 68 (3), 288-308, 2014.
  • Erturk, V., Momani, S. and Odibat, Z. Application of generalized differential transform method to multi-order fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 13 (8), 1642–1654, 2008.
  • Erturk, V., Odibat, Z. and Momani, S. An approximate solution of a fractional order differential equation model of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells, Comput. Math. Appl., 62, 992–1002, 2011.
  • Erturk, V. S., Zaman, G. and Momani, S. A numeric–analytic method for approximating a giving up smoking model containing fractional derivatives, Comput. Math. Appl., 64 (10), 3065-3074, 2012.
  • Frederico, G. S. F. and Torres, D. F. M. Fractional Noether’s theorem in the Riesz–Caputo sense, Appl. Math. Comput., 217 (3), 1023-1033, 2010.
  • Hanert, E., Schumacher, E. and Deleersnijder, E. Front dynamics in fractional-order epidemic models, J. Theoret. Biol., 279 (1), 9-16, 2011.
  • Hethcote, H. W. An age-structured model for pertussis transmission, Math. Biosci., 145 (2), 89-136, 1997. Hethcote, H. W. The mathematics of infectious diseases, SIAM review, 42 (4), 599-653, 2000.
  • Kermack, W. O. and McKendrick, A. G. Contributions to the mathematical theory of epidemics—I, Bull. Math. Biol., 53 (1), 33-55, 1991.
  • Kribs-Zaleta, C. M., Velasco-Hernandez and J. X. A simple vaccination model with multiple endemic states, Math. Biosci., 164, 183-201, 2000.
  • Lakshmikantham, V., Theory of fractional dynamic systems, Cambridge Scientifc Publ, 2009.
  • Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M.,R. and Ilmoniemi, J. Long-range temporal correlations and scaling behavior in human brain oscillations, J. Neuroscience, 21 (4), 1370-1377, 2001.
  • Matignon, D. Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2, 963-968, 1996.
  • Miller, K. S. and Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York 1993.
  • Odibat, Z., Bertelle, C., Aziz-Alaoui, M.A., Duchamp and G. A multi-step differential transform method and application to non-chaotic or chaotic systems, Comput. Math. Appl., 59 (4), 1462–1472, 2010.
  • Odibat, Z., Momani,S. and Erturk, V. Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comput., 197 (2), 467–477, 2008.
  • Ozalp, N. and Demirci, E., A fractional order SEIR model with vertical transmission, Math. Comput. Modelling, 54 (1), 1-6, 2011.
  • Peng, C. K., Havlin, S., Stanley, H. E. and Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 5 (1), 82-87, 1995.
  • Podlubny, I. Fractional Differential Equations, Academic Press, San Diego, 1999.
  • Porco, T. C. and Blower, S. M. Designing HIV vaccination policies: subtypes and cross-immunity, Interfaces, 28 (3), 167-190, 1998.
  • Safdari, H., Kamali, M. Z., Shirazi, A. H., Khaliqi, M., Jafari, G. History effects on network growth, arXiv preprint, 2015, arXiv:1505.06450.
  • Van Mieghem, P. and Van de Bovenkamp, R. Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks, Phys. Rev. Lett., 110 (10), 108701, 2013.
  • Wang, P. Y., Lin, S. D. and Srivastava, H. M. Remarks on a simple fractional-calculus approach to the solutions of the Bessel differential equation of general order and some of its applications, Comput. Math. Appl., 51 (1), 105-114, 2006.
  • Yulmetyev, R. M., Emelyanova, N. A., Demin, S. A., Gafarov, F. M., Hanggi, P. and Yulmetyeva, D. G. Non-Markov stochastic dynamics of real epidemic process of respiratory infections, Phys. A, 331 (1), 300-318, 2004.
  • Zeng, G.Z., Chen, L.S. and Sun, L.H. Complexity of an SIR epidemic dynamics model with impulsive vaccination control, Chaos, Solitons \& Fractals, 26 (2), 495-505, 2005.
There are 34 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Davood Rostamy This is me

Ehsan Mottaghi This is me

Publication Date December 12, 2018
Published in Issue Year 2018 Volume: 47 Issue: 6

Cite

APA Rostamy, D., & Mottaghi, E. (2018). Numerical solution and stability analysis of a nonlinear vaccination model with historical effects. Hacettepe Journal of Mathematics and Statistics, 47(6), 1478-1494.
AMA Rostamy D, Mottaghi E. Numerical solution and stability analysis of a nonlinear vaccination model with historical effects. Hacettepe Journal of Mathematics and Statistics. December 2018;47(6):1478-1494.
Chicago Rostamy, Davood, and Ehsan Mottaghi. “Numerical Solution and Stability Analysis of a Nonlinear Vaccination Model With Historical Effects”. Hacettepe Journal of Mathematics and Statistics 47, no. 6 (December 2018): 1478-94.
EndNote Rostamy D, Mottaghi E (December 1, 2018) Numerical solution and stability analysis of a nonlinear vaccination model with historical effects. Hacettepe Journal of Mathematics and Statistics 47 6 1478–1494.
IEEE D. Rostamy and E. Mottaghi, “Numerical solution and stability analysis of a nonlinear vaccination model with historical effects”, Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, pp. 1478–1494, 2018.
ISNAD Rostamy, Davood - Mottaghi, Ehsan. “Numerical Solution and Stability Analysis of a Nonlinear Vaccination Model With Historical Effects”. Hacettepe Journal of Mathematics and Statistics 47/6 (December 2018), 1478-1494.
JAMA Rostamy D, Mottaghi E. Numerical solution and stability analysis of a nonlinear vaccination model with historical effects. Hacettepe Journal of Mathematics and Statistics. 2018;47:1478–1494.
MLA Rostamy, Davood and Ehsan Mottaghi. “Numerical Solution and Stability Analysis of a Nonlinear Vaccination Model With Historical Effects”. Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, 2018, pp. 1478-94.
Vancouver Rostamy D, Mottaghi E. Numerical solution and stability analysis of a nonlinear vaccination model with historical effects. Hacettepe Journal of Mathematics and Statistics. 2018;47(6):1478-94.