Year 2025,
Early Access, 1 - 20
Javier Casas-de La Rosa
,
William Chen-mertens
Sergio A. Garcia-balan
Project Number
Scholarship 769010
References
- M. Bonanzinga, \emph{Star-Lindel\"of and absolutely star-Lindel\"of spaces}, Quest. Answ. Gen. Topol. 16 (1998) 79–104.
- M. Bonanzinga, F. Cammaroto, Lj.D.R. Ko\v{c}inac, \emph{Star- Hurewicz and related properties}, Applied General Topology 5 (2004) 79-89.
- M. Bonanzinga, M. Matveev, \emph{Some covering properties for $\Psi$-spaces}, Mat. Vesn. 61 (2009) 3-11.
- L. Bukovsk\'y, J. Hale\v{s}, \emph{On Hurewicz properties}, Topology Appl. 132 (2003) 71-79.
- D.K. Burke, \emph{Covering properties}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 347-422.
- J. Casas-de la Rosa, S. A. Garcia-Balan, \emph{Variations of star selection principles on small spaces}, Filomat, to appear.
- J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, \emph{Some star and strongly star selection principles}, Topology Appl. 258 (2019) 572-587.
- D. Chandra, N. Alam, \emph{On certain star versions of the Scheepers property}, https://arxiv.org/abs/2207.08595
- M. V. Cuzzup\`e, Some selective and monotone versions of covering properties and some results on the cardinality of a topological space, Doctoral Thesis, Department of Mathematics and Computer Science, University of Catania, Italy, (2017).
- E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, \emph{Star covering properties}, Topology Appl. 39 (1991) 71-103.
- R. Engelking, \emph{General Topology}, Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics 6, 1989.
- S. A. Garcia-Balan, \emph{Results on star selection principles and weakenings of normality in $\Psi$-spaces}, PhD Dissertation, Mathematics and Statistics Department, York University, Toronto, Ontario, December 2020.
- F. Hern\'andez-Hern\'andez, M. Hru\v{s}\'ak,
\emph{Topology of Mr\'owka-Isbell spaces}. In Pseudocompact Topological Spaces, Eds. Hru\v{s}\'ak, Tamariz, Tkachenko. Springer International Publishing AG, 2018.
- W. Hurewicz, \emph{\"{U}ber eine Verallgemeinerung des Borelschen Theorems}, Math. Z. 24 (1) (1925) 401-421.
- Lj.D.R. Ko\v{c}inac, \emph{Star-Menger and related spaces}, Publ. Math. (Debr.) 55 (1999) 421-431.
- Lj.D.R. Ko\v{c}inac, \emph{Star selection principles: A survey}, Khayyam J. Math. 1 (2015) No. 1 82-106.
- M.V. Matveev, \emph{A survey on star covering properties}, Topology Atlas, Preprint No. 330 (1998).
- K.Menger, Einige überdeckungssätze der Punltmengen-lehre, Sitzungberichte Abt.2a, Mathematik, Astronomie,
Physik, Meteorologie and Mechanik (Wiener Akademie,
Wien) 133 (1924) 421-444.
- D. Repov\v{s}, L. Zdomskyy, \emph{On the Menger covering property and $D$-spaces}, Proc. Amer. Math. Soc. 140 (2012) no. 3, 1069–1074.
- F. Rothberger, \emph{Eine Versch\"arfung der Eigenschaft C}, Fund. Math. 30 (1938) 50-55.
- M. E. Rudin, \emph{Dowker Spaces}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 761-780.
- M. Scheepers, Combinatorics of open covers I: Ramsey Theory, Topol. Appl. 69 (1996) 31--62.
- Y.-K. Song, \emph{Remarks on countability and star covering properties}, Topology Appl. 158 (2011) 121-1123.
- Y.-K. Song, \emph{Remarks on neighborhood star-Lindel\"of spaces II}, Filomat 27:5 (2013) 875-880.
- Y.-K. Song, X. Wei-Feng, \emph{Remarks on new star-selection principles in topology}, Topology Appl. 268 (2019).
- F. D. Tall, \emph{Normality versus collectionwise normality}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 685-732.
- F. D. Tall, \emph{Lindel\"of spaces which are Menger, Hurewicz, Alster, productive, or $D$}, Topology Appl. 158 (2011), no. 18, 2556-2563.
- Ian J. Tree, \emph{Constructing regular 2-starcompact spaces that are not strongly 2-star-Lindel\"of}, Topology Appl. 47 (1992) 129-132.
Iterations and unions of star selection properties on topological spaces
Year 2025,
Early Access, 1 - 20
Javier Casas-de La Rosa
,
William Chen-mertens
Sergio A. Garcia-balan
Abstract
In this paper, we investigate what selection principles properties are possessed by small (with respect to the bounding and dominating numbers) unions of spaces with certain (star) selection principles.. Furthermore, we give several results about iterations of these properties and weaker properties than paracompactness. In addition, we study the behaviour of these iterated properties on $\Psi$-spaces. Finally, we show that, consistently, there is a normal star-Menger space that is not strongly star-Menger; this example answers a couple of questions posed in [J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, \emph{Some star and strongly star selection principles}, Topology Appl. 258 (2019) 572-587]
Supporting Institution
Consejo Nacional de Ciencia y Tecnología (CONACYT, México)
Project Number
Scholarship 769010
Thanks
The first-listed author thanks to Consejo Nacional de Ciencia y Tecnología (CONACYT, México) for the financial support (Scholarship 769010) for this research.
References
- M. Bonanzinga, \emph{Star-Lindel\"of and absolutely star-Lindel\"of spaces}, Quest. Answ. Gen. Topol. 16 (1998) 79–104.
- M. Bonanzinga, F. Cammaroto, Lj.D.R. Ko\v{c}inac, \emph{Star- Hurewicz and related properties}, Applied General Topology 5 (2004) 79-89.
- M. Bonanzinga, M. Matveev, \emph{Some covering properties for $\Psi$-spaces}, Mat. Vesn. 61 (2009) 3-11.
- L. Bukovsk\'y, J. Hale\v{s}, \emph{On Hurewicz properties}, Topology Appl. 132 (2003) 71-79.
- D.K. Burke, \emph{Covering properties}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 347-422.
- J. Casas-de la Rosa, S. A. Garcia-Balan, \emph{Variations of star selection principles on small spaces}, Filomat, to appear.
- J. Casas-de la Rosa, S. A. Garcia-Balan, P. J. Szeptycki, \emph{Some star and strongly star selection principles}, Topology Appl. 258 (2019) 572-587.
- D. Chandra, N. Alam, \emph{On certain star versions of the Scheepers property}, https://arxiv.org/abs/2207.08595
- M. V. Cuzzup\`e, Some selective and monotone versions of covering properties and some results on the cardinality of a topological space, Doctoral Thesis, Department of Mathematics and Computer Science, University of Catania, Italy, (2017).
- E.K. van Douwen, G.M. Reed, A.W. Roscoe, I.J. Tree, \emph{Star covering properties}, Topology Appl. 39 (1991) 71-103.
- R. Engelking, \emph{General Topology}, Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics 6, 1989.
- S. A. Garcia-Balan, \emph{Results on star selection principles and weakenings of normality in $\Psi$-spaces}, PhD Dissertation, Mathematics and Statistics Department, York University, Toronto, Ontario, December 2020.
- F. Hern\'andez-Hern\'andez, M. Hru\v{s}\'ak,
\emph{Topology of Mr\'owka-Isbell spaces}. In Pseudocompact Topological Spaces, Eds. Hru\v{s}\'ak, Tamariz, Tkachenko. Springer International Publishing AG, 2018.
- W. Hurewicz, \emph{\"{U}ber eine Verallgemeinerung des Borelschen Theorems}, Math. Z. 24 (1) (1925) 401-421.
- Lj.D.R. Ko\v{c}inac, \emph{Star-Menger and related spaces}, Publ. Math. (Debr.) 55 (1999) 421-431.
- Lj.D.R. Ko\v{c}inac, \emph{Star selection principles: A survey}, Khayyam J. Math. 1 (2015) No. 1 82-106.
- M.V. Matveev, \emph{A survey on star covering properties}, Topology Atlas, Preprint No. 330 (1998).
- K.Menger, Einige überdeckungssätze der Punltmengen-lehre, Sitzungberichte Abt.2a, Mathematik, Astronomie,
Physik, Meteorologie and Mechanik (Wiener Akademie,
Wien) 133 (1924) 421-444.
- D. Repov\v{s}, L. Zdomskyy, \emph{On the Menger covering property and $D$-spaces}, Proc. Amer. Math. Soc. 140 (2012) no. 3, 1069–1074.
- F. Rothberger, \emph{Eine Versch\"arfung der Eigenschaft C}, Fund. Math. 30 (1938) 50-55.
- M. E. Rudin, \emph{Dowker Spaces}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 761-780.
- M. Scheepers, Combinatorics of open covers I: Ramsey Theory, Topol. Appl. 69 (1996) 31--62.
- Y.-K. Song, \emph{Remarks on countability and star covering properties}, Topology Appl. 158 (2011) 121-1123.
- Y.-K. Song, \emph{Remarks on neighborhood star-Lindel\"of spaces II}, Filomat 27:5 (2013) 875-880.
- Y.-K. Song, X. Wei-Feng, \emph{Remarks on new star-selection principles in topology}, Topology Appl. 268 (2019).
- F. D. Tall, \emph{Normality versus collectionwise normality}, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 685-732.
- F. D. Tall, \emph{Lindel\"of spaces which are Menger, Hurewicz, Alster, productive, or $D$}, Topology Appl. 158 (2011), no. 18, 2556-2563.
- Ian J. Tree, \emph{Constructing regular 2-starcompact spaces that are not strongly 2-star-Lindel\"of}, Topology Appl. 47 (1992) 129-132.