Research Article
BibTex RIS Cite
Year 2025, Early Access, 1 - 9
https://doi.org/10.15672/hujms.1451136

Abstract

References

  • [1] A.G. Aksoy and M.A. Khamsi, Nonstandard Methods, in: Fixed Point Theory, Springer, New York, 1990

Skew generalized von Neumann-Jordan constant in Banach Spaces

Year 2025, Early Access, 1 - 9
https://doi.org/10.15672/hujms.1451136

Abstract

We introduce a new geometric constant $C^{p}_{NJ}(\zeta,\eta,X)$ in Banach spaces, which is called the skew generalized von Neumann-Jordan constant. First, the upper and lower bounds of the new constant are given for any Banach space. Then we calculate the constant values for some particular spaces. On this basis, we discuss the relation between the constant $C^{p}_{NJ}(\zeta,\eta,X)$ and the convexity modules $\delta_X(\varepsilon)$, the James constant $J(X)$. Finally, some sufficient conditions for the uniform normal structure associated with the constant $C^{p}_{NJ}(\zeta,\eta,X)$ are established.

References

  • [1] A.G. Aksoy and M.A. Khamsi, Nonstandard Methods, in: Fixed Point Theory, Springer, New York, 1990
There are 1 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Mathematics
Authors

Qichuan Ni 0009-0001-8931-369X

Qi Liu 0000-0003-4322-308X

Yin Zhou 0009-0003-4866-8704

Early Pub Date August 27, 2024
Publication Date
Submission Date March 11, 2024
Acceptance Date May 7, 2024
Published in Issue Year 2025 Early Access

Cite

APA Ni, Q., Liu, Q., & Zhou, Y. (2024). Skew generalized von Neumann-Jordan constant in Banach Spaces. Hacettepe Journal of Mathematics and Statistics1-9. https://doi.org/10.15672/hujms.1451136
AMA Ni Q, Liu Q, Zhou Y. Skew generalized von Neumann-Jordan constant in Banach Spaces. Hacettepe Journal of Mathematics and Statistics. Published online August 1, 2024:1-9. doi:10.15672/hujms.1451136
Chicago Ni, Qichuan, Qi Liu, and Yin Zhou. “Skew Generalized Von Neumann-Jordan Constant in Banach Spaces”. Hacettepe Journal of Mathematics and Statistics, August (August 2024), 1-9. https://doi.org/10.15672/hujms.1451136.
EndNote Ni Q, Liu Q, Zhou Y (August 1, 2024) Skew generalized von Neumann-Jordan constant in Banach Spaces. Hacettepe Journal of Mathematics and Statistics 1–9.
IEEE Q. Ni, Q. Liu, and Y. Zhou, “Skew generalized von Neumann-Jordan constant in Banach Spaces”, Hacettepe Journal of Mathematics and Statistics, pp. 1–9, August 2024, doi: 10.15672/hujms.1451136.
ISNAD Ni, Qichuan et al. “Skew Generalized Von Neumann-Jordan Constant in Banach Spaces”. Hacettepe Journal of Mathematics and Statistics. August 2024. 1-9. https://doi.org/10.15672/hujms.1451136.
JAMA Ni Q, Liu Q, Zhou Y. Skew generalized von Neumann-Jordan constant in Banach Spaces. Hacettepe Journal of Mathematics and Statistics. 2024;:1–9.
MLA Ni, Qichuan et al. “Skew Generalized Von Neumann-Jordan Constant in Banach Spaces”. Hacettepe Journal of Mathematics and Statistics, 2024, pp. 1-9, doi:10.15672/hujms.1451136.
Vancouver Ni Q, Liu Q, Zhou Y. Skew generalized von Neumann-Jordan constant in Banach Spaces. Hacettepe Journal of Mathematics and Statistics. 2024:1-9.