Year 2025,
Volume: 54 Issue: 4, 1276 - 1299, 29.08.2025
Seher Kaya
,
Rafael Lopez
References
-
[1] S. Akamine, J. Cho and Y. Ogata, Analysis of timelike Thomsen surfaces, J. Geom.
Anal. 30, 731–761, 2020.
-
[2] S. Akamine and H. Fujino, Reflection principle for lightlike line segments on maximal
surfaces, Ann. Global Anal. Geom. 59, 93–108, 2021.
-
[3] L. J. Alías, R. M. B. Chaves and P. Mira, Björling problem for maximal surfaces in
Lorentz-Minkowski space, Math. Proc. Camb. Phil. Soc. 134, 289–316, 2003.
-
[4] L. Bianchi, Lezioni di Geometria Differenziale, Volume II. Enrico Spoerri, Pisa, 1903.
-
[5] A. I. Bobenko, Constant mean curvature surfaces and integrable equations, Uspekhi
Mat. Nauk. Russian Math. Surv. 46, 3–42, 1991.
-
[6] D. Brander, R. Rossman and N. Schmitt, Holomorphic representation of constant
mean curvature surfaces in Minkowski space: Consequences of non-compactness in
loop group methods, Adv. Math. 223, 949–986, 2010.
-
[7] R. M. B. Chaves, M. P. Dussan and M. Magid, M. Björling problem for timelike
surfaces in the Lorentz-Minkowski space, J. Math. Anal. Appl. 377, 481–494, 2011.
-
[8] L. C. B. Da Silva, Surfaces of revolution with prescribed mean and skew curvatures
in Lorentz-Minkowski space, Tohoku Math. J. 73, 317–339, 2021.
-
[9] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Boundary Value Problems.
Minimal Surfaces I. Springer, Berlin, 1992.
-
[10] S. Erdem, Harmonic maps of Lorentz surfaces, quadratic differentials and paraholomorphicity,
Beiträge Algebra Geom. 38, 19–32, 1997.
-
[11] F. J. M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-
Minkowski space L3, Math. Proc. Camb. Phil. Soc. 111, 515–524, 1992.
-
[12] D. Freese and M. Weber, On surfaces that are intrinsically surfaces of revolution, J.
Geom. 108, 743–762, 2017.
-
[13] S. Fujimori, Y. W. Kim, S-E- Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara,
K. Yamada and S-D. Yang, Zero mean curvature surfaces in L3 containing a light-like
line, C. R. Math. Acad. Sci. Paris 350, 975–978, 2012.
-
[14] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces,
Math. Z. 259, 827–848, 2008.
-
[15] E. Güler, The algebraic surfaces of the Enneper family of maximal surfaces in three
dimensional Minkowski space, Axioms 11, 4, 2022.
-
[16] J. Inoguchi and M. Toda, Timelike minimal surfaces via loop groups, Acta Appl.
Math. 63, 313–355, 2004.
-
[17] Y. W. Kim, S. Koh, H. Shin and S. Yang, Spacelike maximal surfaces, timelike minimal
surfaces and Björling representation formulae, J. Korean Math. Soc. 48, 1083–
1100, 2011.
-
[18] Y. W. Kim and S. D.Yang, A family of maximal surfaces in Lorentz-Minkowski threespace,
Proc. Amer. Math. Soc. 134, 3379–3390, 2006.
-
[19] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski Space L3, Tokyo J.
Math. 6, 297–309, 1983.
-
[20] J. J. Konderak, A Weierstrass representation theorem for Lorentz surfaces, Complex
Var. Theory Appl. 50, 319–332, 2005.
-
[21] Z. Kose, M. Toda and E. Aulisa, Solving Bonnet problems to construct families of
surfaces, Balk. J. Geom. Appl. 16, 70–80, 2011.
-
[22] R. López, Timelike surfaces with constant mean curvature in Lorentz three-space,
Tohoku Math. J. 52, 515–532, 2000.
-
[23] R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space,
Int. Electron. J. Geom. 7, 44–107, 2014.
-
[24] R. López, Surfaces in Lorentz-Minkowski space with mean curvature and Gauss curvature
both constant, In: Differential Geometry in Lorentz-Minkowski Space, Ed. Univ.
Granada, Granada, 2017, pp. 71–85.
-
[25] R. López and S. Kaya, New examples of maximal surfaces in Lorentz-Minkowski space,
Kyushu J. Math. 71, 311–327, 2017.
-
[26] F. J. López and F. Martín, Complete minimal surfaces in R3, Publ. Mat. 43, 341–449,
1999.
-
[27] R. López and A. Pámpano, Classification of rotational surfaces with constant skew
curvature in 3-space forms, J. Math. Anal. Appl. 489, 124195, 2020.
-
[28] T. K. Milnor, Entire timelike minimal surfaces in E3
1 , Michigan Math. J. 37, 163–
177, 1990.
-
[29] Y. Ogata, Spacelike constant mean curvature and maximal surfaces in 3-dimensional
de Sitter space via Iwasawa splitting, Tsukuba J. Math. 39, 259–284, 2016.
-
[30] Y. Ogata, The DPW method for constant mean curvature surfaces in 3-dimensional
Lorentzian spaceforms, with applications to Smyth type surfaces, Hokkaido Math. J.
46, 315–350, 2017.
-
[31] B. Smyth, A generalization of a theorem of Delaunay on constant mean curvature
surfaces, Statistical Thermodynamics and Differential Geometry of Microstructured
Materials (Minneapolis, MN, 1991), IMA Vol. Math. Appl. 51, 123–130, Springer,
New York, 1993.
-
[32] C-L. Terng, Lecture Notes on Curves and Surfaces, Part I. Univ. of California, 2005.
https://www.math.uci.edu/~cterng/162A_Lecture_Notes.pdf
-
[33] M. Toda and A. Pigazzini, A note on the class of surfaces with constant skew curvature,
J. Geom. Symmetry Phys. 46, 51–58, 2017.
-
[34] M. Timmreck, U. Pinkall and D. Ferus, Constant mean curvature planes with inner
rotational symmetry in Euclidean 3-space, Math. Z. 215, 561–568, 1994.
-
[35] I. Van de Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, In:
Geometry and topology of submanifolds, II (Avignon, 1988), 344–369, World Sci
Publ. , NJ, USA, 1990.
-
[36] M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space,
Hokkaido Math. J. 35, 13–40, 2006.
-
[37] T. Weinstein, An Introduction to Lorentz Surfaces, de Gruyter Exposition in Math.
22, Walter de Gruyter, Berlin, 1996.
On intrinsic rotational surfaces in the Lorentz-Minkowski space
Year 2025,
Volume: 54 Issue: 4, 1276 - 1299, 29.08.2025
Seher Kaya
,
Rafael Lopez
Abstract
Spacelike intrinsic rotational surfaces with constant mean curvature in the Lorentz-Minkowski space $\mathbf{E}_1^3$ have been recently investigated by Brander et al., extending the known Smyth's surfaces in Euclidean space. Assuming that the surface is intrinsic rotational with coordinates $(u,v)$ and conformal factor $\rho(u)^2$, we replace the constancy of the mean curvature with the property that the Weingarten endomorphism $A$ can be expressed as $\Phi_{-\alpha(v)}\left(\begin{array}{} \lambda_1(u)\quad 0\quad\\ 0 \quad\lambda_2(u)\end{array}\right)\Phi_{\alpha(v)}$, where $\Phi_{\alpha(v)}$ is the (Euclidean or hyperbolic) rotation of angle $\alpha(v)$ at each tangent plane and $\lambda_i$ are the principal curvatures. Under these conditions, it is proved that the mean curvature is constant and $\alpha$ is a linear function. This result also covers the case that the surface is timelike. If the mean curvature is zero, we determine all spacelike and timelike intrinsic rotational surfaces with rotational angle $\alpha$. This family of surfaces includes the spacelike and timelike Enneper surfaces.
References
-
[1] S. Akamine, J. Cho and Y. Ogata, Analysis of timelike Thomsen surfaces, J. Geom.
Anal. 30, 731–761, 2020.
-
[2] S. Akamine and H. Fujino, Reflection principle for lightlike line segments on maximal
surfaces, Ann. Global Anal. Geom. 59, 93–108, 2021.
-
[3] L. J. Alías, R. M. B. Chaves and P. Mira, Björling problem for maximal surfaces in
Lorentz-Minkowski space, Math. Proc. Camb. Phil. Soc. 134, 289–316, 2003.
-
[4] L. Bianchi, Lezioni di Geometria Differenziale, Volume II. Enrico Spoerri, Pisa, 1903.
-
[5] A. I. Bobenko, Constant mean curvature surfaces and integrable equations, Uspekhi
Mat. Nauk. Russian Math. Surv. 46, 3–42, 1991.
-
[6] D. Brander, R. Rossman and N. Schmitt, Holomorphic representation of constant
mean curvature surfaces in Minkowski space: Consequences of non-compactness in
loop group methods, Adv. Math. 223, 949–986, 2010.
-
[7] R. M. B. Chaves, M. P. Dussan and M. Magid, M. Björling problem for timelike
surfaces in the Lorentz-Minkowski space, J. Math. Anal. Appl. 377, 481–494, 2011.
-
[8] L. C. B. Da Silva, Surfaces of revolution with prescribed mean and skew curvatures
in Lorentz-Minkowski space, Tohoku Math. J. 73, 317–339, 2021.
-
[9] U. Dierkes, S. Hildebrandt, A. Küster and O. Wohlrab, Boundary Value Problems.
Minimal Surfaces I. Springer, Berlin, 1992.
-
[10] S. Erdem, Harmonic maps of Lorentz surfaces, quadratic differentials and paraholomorphicity,
Beiträge Algebra Geom. 38, 19–32, 1997.
-
[11] F. J. M. Estudillo and A. Romero, Generalized maximal surfaces in Lorentz-
Minkowski space L3, Math. Proc. Camb. Phil. Soc. 111, 515–524, 1992.
-
[12] D. Freese and M. Weber, On surfaces that are intrinsically surfaces of revolution, J.
Geom. 108, 743–762, 2017.
-
[13] S. Fujimori, Y. W. Kim, S-E- Koh, W. Rossman, H. Shin, H. Takahashi, M. Umehara,
K. Yamada and S-D. Yang, Zero mean curvature surfaces in L3 containing a light-like
line, C. R. Math. Acad. Sci. Paris 350, 975–978, 2012.
-
[14] S. Fujimori, K. Saji, M. Umehara and K. Yamada, Singularities of maximal surfaces,
Math. Z. 259, 827–848, 2008.
-
[15] E. Güler, The algebraic surfaces of the Enneper family of maximal surfaces in three
dimensional Minkowski space, Axioms 11, 4, 2022.
-
[16] J. Inoguchi and M. Toda, Timelike minimal surfaces via loop groups, Acta Appl.
Math. 63, 313–355, 2004.
-
[17] Y. W. Kim, S. Koh, H. Shin and S. Yang, Spacelike maximal surfaces, timelike minimal
surfaces and Björling representation formulae, J. Korean Math. Soc. 48, 1083–
1100, 2011.
-
[18] Y. W. Kim and S. D.Yang, A family of maximal surfaces in Lorentz-Minkowski threespace,
Proc. Amer. Math. Soc. 134, 3379–3390, 2006.
-
[19] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski Space L3, Tokyo J.
Math. 6, 297–309, 1983.
-
[20] J. J. Konderak, A Weierstrass representation theorem for Lorentz surfaces, Complex
Var. Theory Appl. 50, 319–332, 2005.
-
[21] Z. Kose, M. Toda and E. Aulisa, Solving Bonnet problems to construct families of
surfaces, Balk. J. Geom. Appl. 16, 70–80, 2011.
-
[22] R. López, Timelike surfaces with constant mean curvature in Lorentz three-space,
Tohoku Math. J. 52, 515–532, 2000.
-
[23] R. López, Differential geometry of curves and surfaces in Lorentz-Minkowski space,
Int. Electron. J. Geom. 7, 44–107, 2014.
-
[24] R. López, Surfaces in Lorentz-Minkowski space with mean curvature and Gauss curvature
both constant, In: Differential Geometry in Lorentz-Minkowski Space, Ed. Univ.
Granada, Granada, 2017, pp. 71–85.
-
[25] R. López and S. Kaya, New examples of maximal surfaces in Lorentz-Minkowski space,
Kyushu J. Math. 71, 311–327, 2017.
-
[26] F. J. López and F. Martín, Complete minimal surfaces in R3, Publ. Mat. 43, 341–449,
1999.
-
[27] R. López and A. Pámpano, Classification of rotational surfaces with constant skew
curvature in 3-space forms, J. Math. Anal. Appl. 489, 124195, 2020.
-
[28] T. K. Milnor, Entire timelike minimal surfaces in E3
1 , Michigan Math. J. 37, 163–
177, 1990.
-
[29] Y. Ogata, Spacelike constant mean curvature and maximal surfaces in 3-dimensional
de Sitter space via Iwasawa splitting, Tsukuba J. Math. 39, 259–284, 2016.
-
[30] Y. Ogata, The DPW method for constant mean curvature surfaces in 3-dimensional
Lorentzian spaceforms, with applications to Smyth type surfaces, Hokkaido Math. J.
46, 315–350, 2017.
-
[31] B. Smyth, A generalization of a theorem of Delaunay on constant mean curvature
surfaces, Statistical Thermodynamics and Differential Geometry of Microstructured
Materials (Minneapolis, MN, 1991), IMA Vol. Math. Appl. 51, 123–130, Springer,
New York, 1993.
-
[32] C-L. Terng, Lecture Notes on Curves and Surfaces, Part I. Univ. of California, 2005.
https://www.math.uci.edu/~cterng/162A_Lecture_Notes.pdf
-
[33] M. Toda and A. Pigazzini, A note on the class of surfaces with constant skew curvature,
J. Geom. Symmetry Phys. 46, 51–58, 2017.
-
[34] M. Timmreck, U. Pinkall and D. Ferus, Constant mean curvature planes with inner
rotational symmetry in Euclidean 3-space, Math. Z. 215, 561–568, 1994.
-
[35] I. Van de Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, In:
Geometry and topology of submanifolds, II (Avignon, 1988), 344–369, World Sci
Publ. , NJ, USA, 1990.
-
[36] M. Umehara and K. Yamada, Maximal surfaces with singularities in Minkowski space,
Hokkaido Math. J. 35, 13–40, 2006.
-
[37] T. Weinstein, An Introduction to Lorentz Surfaces, de Gruyter Exposition in Math.
22, Walter de Gruyter, Berlin, 1996.