Let $R$ be an arbitrary ring. In this paper we will introduce the concept of a weakly second $R$-module (a generalization of the second $R$-module) and we will obtain some related results
Beyranvand, R., & Rastgoo, F. (2016). Weakly second modules over noncommutative rings. Hacettepe Journal of Mathematics and Statistics, 45(5), 1355-1366.
AMA
Beyranvand R, Rastgoo F. Weakly second modules over noncommutative rings. Hacettepe Journal of Mathematics and Statistics. October 2016;45(5):1355-1366.
Chicago
Beyranvand, R., and F. Rastgoo. “Weakly Second Modules over Noncommutative Rings”. Hacettepe Journal of Mathematics and Statistics 45, no. 5 (October 2016): 1355-66.
EndNote
Beyranvand R, Rastgoo F (October 1, 2016) Weakly second modules over noncommutative rings. Hacettepe Journal of Mathematics and Statistics 45 5 1355–1366.
IEEE
R. Beyranvand and F. Rastgoo, “Weakly second modules over noncommutative rings”, Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 5, pp. 1355–1366, 2016.
ISNAD
Beyranvand, R. - Rastgoo, F. “Weakly Second Modules over Noncommutative Rings”. Hacettepe Journal of Mathematics and Statistics 45/5 (October 2016), 1355-1366.
JAMA
Beyranvand R, Rastgoo F. Weakly second modules over noncommutative rings. Hacettepe Journal of Mathematics and Statistics. 2016;45:1355–1366.
MLA
Beyranvand, R. and F. Rastgoo. “Weakly Second Modules over Noncommutative Rings”. Hacettepe Journal of Mathematics and Statistics, vol. 45, no. 5, 2016, pp. 1355-66.
Vancouver
Beyranvand R, Rastgoo F. Weakly second modules over noncommutative rings. Hacettepe Journal of Mathematics and Statistics. 2016;45(5):1355-66.