As a continues study of the paper [4], in here, we first state and prove
the p-Cockcroft property (or, equivalently, efficiency) for a presentation,
say PE, of the semi-direct product of a free abelian monoid rank two by
a finite cyclic monoid. Then, in a separate section, we present sufficient
conditions on a special case for PE to be minimal whilst it is inefficient.
Cevik, A. S., Das, K. C., Cangul, İ. N., Maden, A. D. (2014). Minimality over free monoid presentations. Hacettepe Journal of Mathematics and Statistics, 43(6), 899-913.
AMA
Cevik AS, Das KC, Cangul İN, Maden AD. Minimality over free monoid presentations. Hacettepe Journal of Mathematics and Statistics. December 2014;43(6):899-913.
Chicago
Cevik, A. Sinan, Kinkar Ch. Das, İ. Naci Cangul, and A. Dilek Maden. “Minimality over Free Monoid Presentations”. Hacettepe Journal of Mathematics and Statistics 43, no. 6 (December 2014): 899-913.
EndNote
Cevik AS, Das KC, Cangul İN, Maden AD (December 1, 2014) Minimality over free monoid presentations. Hacettepe Journal of Mathematics and Statistics 43 6 899–913.
IEEE
A. S. Cevik, K. C. Das, İ. N. Cangul, and A. D. Maden, “Minimality over free monoid presentations”, Hacettepe Journal of Mathematics and Statistics, vol. 43, no. 6, pp. 899–913, 2014.
ISNAD
Cevik, A. Sinan et al. “Minimality over Free Monoid Presentations”. Hacettepe Journal of Mathematics and Statistics 43/6 (December 2014), 899-913.
JAMA
Cevik AS, Das KC, Cangul İN, Maden AD. Minimality over free monoid presentations. Hacettepe Journal of Mathematics and Statistics. 2014;43:899–913.
MLA
Cevik, A. Sinan et al. “Minimality over Free Monoid Presentations”. Hacettepe Journal of Mathematics and Statistics, vol. 43, no. 6, 2014, pp. 899-13.
Vancouver
Cevik AS, Das KC, Cangul İN, Maden AD. Minimality over free monoid presentations. Hacettepe Journal of Mathematics and Statistics. 2014;43(6):899-913.