Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 3, 779 - 784, 15.06.2019

Abstract

References

  • R. Engelking, General Topology, PWN, Warszawa, 1977.
  • I. Juhász, K. Kunen and M.E. Rudin, Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math. 28, 998-1005, 1976.
  • L. Kalantan, Results about $\kappa$-normality, Topology Appl. 125, 47-62, 2002.
  • L. Kalantan and M. Saeed, $L$-Normality, Topology Proceedings 50, 141-149, 2017.
  • L. Kalantan and P. Szeptycki, $\kappa$-normality and products of ordinals, Topology Appl. 123 (3), 537-545, 2002.
  • M.E. Rudin, A Separable Dowker space, Symposia Mathematica, Instituto Nazionale di Alta Mathematica, 1973.
  • M.M. Saeed, Countable Normality, J. Math. Anal. 9 (1), 116-123, 2018.
  • M.M. Saeed, L. Kalantan and H. Alzumi, $C$ - Paracompactness and $C_2$ - Paracom- pactness, Turk. J. Math. 43, 9-20, 2019.
  • E.V. Shchepin, Real Valued Functions and Spaces Close to Normal, Sib. J. Math. 13, 1182-1196, 1972.
  • M.K. Singal and A.R. Singal, Mildly Normal Spaces, Kyungpook Math J. 13, 29-31, 1973.
  • L. Steen and J.A. Seebach, Counterexamples in Topology, Dover Publications, INC. 1995.
  • E.K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topol- ogy, North-Holland, Amsterdam, 111-167, 1984.
  • W. Weiss, Small Dowker Spaces, Pacific J. Math. 94, 485-492, 1981.

$L$-paracompactness and $L_2$-paracompactness

Year 2019, Volume: 48 Issue: 3, 779 - 784, 15.06.2019

Abstract

A  topological space $X$ is called $L$-paracompact if there exist a paracompact space $Y$ and a bijective function $f:X\longrightarrow Y$ such that the restriction $f\upharpoonright_{A}:A\longrightarrow f(A)$ is a homeomorphism for each Lindelö}f subspace $A\subseteq X$. A  topological space $X$ is called $L_2$-paracompact if there exist a Hausdorff paracompact space $Y$ and a bijective function $f:X\longrightarrow Y$ such that the restriction $f\upharpoonright_{A}:A\longrightarrow f(A)$ is a homeomorphism for each Lindelöf subspace $A\subseteq X$. We investigate these two properties.

References

  • R. Engelking, General Topology, PWN, Warszawa, 1977.
  • I. Juhász, K. Kunen and M.E. Rudin, Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math. 28, 998-1005, 1976.
  • L. Kalantan, Results about $\kappa$-normality, Topology Appl. 125, 47-62, 2002.
  • L. Kalantan and M. Saeed, $L$-Normality, Topology Proceedings 50, 141-149, 2017.
  • L. Kalantan and P. Szeptycki, $\kappa$-normality and products of ordinals, Topology Appl. 123 (3), 537-545, 2002.
  • M.E. Rudin, A Separable Dowker space, Symposia Mathematica, Instituto Nazionale di Alta Mathematica, 1973.
  • M.M. Saeed, Countable Normality, J. Math. Anal. 9 (1), 116-123, 2018.
  • M.M. Saeed, L. Kalantan and H. Alzumi, $C$ - Paracompactness and $C_2$ - Paracom- pactness, Turk. J. Math. 43, 9-20, 2019.
  • E.V. Shchepin, Real Valued Functions and Spaces Close to Normal, Sib. J. Math. 13, 1182-1196, 1972.
  • M.K. Singal and A.R. Singal, Mildly Normal Spaces, Kyungpook Math J. 13, 29-31, 1973.
  • L. Steen and J.A. Seebach, Counterexamples in Topology, Dover Publications, INC. 1995.
  • E.K. van Douwen, The Integers and Topology, in: Handbook of Set-Theoretic Topol- ogy, North-Holland, Amsterdam, 111-167, 1984.
  • W. Weiss, Small Dowker Spaces, Pacific J. Math. 94, 485-492, 1981.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Lutfi Kalantan This is me 0000-0003-4148-9087

Publication Date June 15, 2019
Published in Issue Year 2019 Volume: 48 Issue: 3

Cite

APA Kalantan, L. (2019). $L$-paracompactness and $L_2$-paracompactness. Hacettepe Journal of Mathematics and Statistics, 48(3), 779-784.
AMA Kalantan L. $L$-paracompactness and $L_2$-paracompactness. Hacettepe Journal of Mathematics and Statistics. June 2019;48(3):779-784.
Chicago Kalantan, Lutfi. “$L$-Paracompactness and $L_2$-Paracompactness”. Hacettepe Journal of Mathematics and Statistics 48, no. 3 (June 2019): 779-84.
EndNote Kalantan L (June 1, 2019) $L$-paracompactness and $L_2$-paracompactness. Hacettepe Journal of Mathematics and Statistics 48 3 779–784.
IEEE L. Kalantan, “$L$-paracompactness and $L_2$-paracompactness”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, pp. 779–784, 2019.
ISNAD Kalantan, Lutfi. “$L$-Paracompactness and $L_2$-Paracompactness”. Hacettepe Journal of Mathematics and Statistics 48/3 (June 2019), 779-784.
JAMA Kalantan L. $L$-paracompactness and $L_2$-paracompactness. Hacettepe Journal of Mathematics and Statistics. 2019;48:779–784.
MLA Kalantan, Lutfi. “$L$-Paracompactness and $L_2$-Paracompactness”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 3, 2019, pp. 779-84.
Vancouver Kalantan L. $L$-paracompactness and $L_2$-paracompactness. Hacettepe Journal of Mathematics and Statistics. 2019;48(3):779-84.