Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 4, 1017 - 1034, 08.08.2019

Abstract

References

  • [1] R. Aghalary, P. Arjomandinia and A. Ebadian, Application of strong differential superordination to a general equation, Rocky Mountain J. Math. 47 (2), 383-390, 2017.
  • [2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3), 1017-1026, 2012.
  • [3] R.M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci. 2007, Art. ID 62925, 7 pages, 2007.
  • [4] O. Altintas, Certain applications of subordination associated with neighborhoods, Hacet. J. Math. Stat. 39 (4), 527-534, 2010.
  • [5] N. Bohra and V. Ravichandran, On Confluent hypergeometric function and generalized Bessel functions, Anal. Math. 43 (4), 533-545, 2017.
  • [6] T. Bulboacă, Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  • [7] T. Bulboacă, N.E. Cho and P. Goswami, Differential superordinations and sandwichtype results, in: Current Topics in Pure and Computational Complex Analysis, 109- 146, Trends Math, Birkhäuser/Springer, New Delhi, 2014.
  • [8] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius Problems for Starlike Functions Associated with the Sine Function, Bull. Iranian Math. Soc. 45 (1), 213-232, 2019.
  • [9] P.L. Duren, Univalent Functions, GTM 259, Springer-Verlag, New York, 1983.
  • [10] I. Faisal and M. Darus, Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions, Hacet. J. Math. Stat. 43 (3), 375-382, 2014.
  • [11] A.W. Goodman, Univalent Functions. Vol. I, Mariner, Tampa, FL, 1983.
  • [12] P. Hästö, S. Ponnusamy and M. Vuorinen, Starlikeness of the Gaussian hypergeometric functions, Complex Var. Elliptic Equ. 55 (1-3), 173-184, 2010.
  • [13] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28, 297-326, 1973.
  • [14] S.S. Kumar, V. Kumar, V. Ravichandran and N.E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J Inequal. Appl. 2013, Art. ID 176, 13 pages, 2013.
  • [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.
  • [16] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (5), 1179-1191, 2018.
  • [17] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin), 157- 169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1992.
  • [18] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32 (2), 185-195, 1985.
  • [19] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York, 2000.
  • [20] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1), 365-386, 2015.
  • [21] L. Moslehi and A. Ansari, Squared radial Ornstein-Uhlenbeck processes and inverse Laplace transforms of products of confluent hypergeometric functions, Hacet. J. Math. Stat. 46 (3), 409-417, 2017
  • [22] G. Oros, R. Sendrutiu and G.I. Oros, First-order strong differential superordinations, Math. Rep. (Bucur.) 15 (2), 115-124, 2013.
  • [23] K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc. 32 (3), 321-330, 1985.
  • [24] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. 34, 9-15, 2005.
  • [25] V. Ravichandran, F. Rønning and T.N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1-4), 265-280, 1997.
  • [26] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52 (4), 727-749, 2015.
  • [27] T.N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci. 12 (2), 333-340, 1989.
  • [28] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.
  • [29] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Sci. Univ. Tech. Resoviensis, Math. 19, 101-105, 1996.
  • [30] N. Tuneski, T. Bulboacă and B. Jolevska-Tunesk, Sharp results on linear combination of simple expressions of analytic functions, Hacet. J. Math. Stat. 45 (1), 121-128, 2016.

Some special differential subordinations

Year 2019, Volume: 48 Issue: 4, 1017 - 1034, 08.08.2019

Abstract

For an analytic function $p$ satisfying $p(0)=1$, we obtain sharp estimates on $\beta$ such that  the first order differential subordination $p(z)+\beta zp'(z)\prec \mathcal{P}(z)$ or  $1+\beta zp'(z)/p^{j}(z)\prec \mathcal{P}(z)$, $(j=0,1,2)$ implies $p(z)\prec \mathcal{Q}(z)$ where $\mathcal{P}$ and $\mathcal{Q}$ are Carathéodory functions. The key tools in the proof of main results are the theory of differential subordination  and some properties of hypergeometric functions. Further, these subordination results immediately give sufficient conditions for  an analytic function $f$ to be in various well-known subclasses of starlike functions.

References

  • [1] R. Aghalary, P. Arjomandinia and A. Ebadian, Application of strong differential superordination to a general equation, Rocky Mountain J. Math. 47 (2), 383-390, 2017.
  • [2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3), 1017-1026, 2012.
  • [3] R.M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski starlikeness, Int. J. Math. Math. Sci. 2007, Art. ID 62925, 7 pages, 2007.
  • [4] O. Altintas, Certain applications of subordination associated with neighborhoods, Hacet. J. Math. Stat. 39 (4), 527-534, 2010.
  • [5] N. Bohra and V. Ravichandran, On Confluent hypergeometric function and generalized Bessel functions, Anal. Math. 43 (4), 533-545, 2017.
  • [6] T. Bulboacă, Differential Subordinations and Superordinations. Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  • [7] T. Bulboacă, N.E. Cho and P. Goswami, Differential superordinations and sandwichtype results, in: Current Topics in Pure and Computational Complex Analysis, 109- 146, Trends Math, Birkhäuser/Springer, New Delhi, 2014.
  • [8] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius Problems for Starlike Functions Associated with the Sine Function, Bull. Iranian Math. Soc. 45 (1), 213-232, 2019.
  • [9] P.L. Duren, Univalent Functions, GTM 259, Springer-Verlag, New York, 1983.
  • [10] I. Faisal and M. Darus, Application of nonhomogenous Cauchy-Euler differential equation for certain class of analytic functions, Hacet. J. Math. Stat. 43 (3), 375-382, 2014.
  • [11] A.W. Goodman, Univalent Functions. Vol. I, Mariner, Tampa, FL, 1983.
  • [12] P. Hästö, S. Ponnusamy and M. Vuorinen, Starlikeness of the Gaussian hypergeometric functions, Complex Var. Elliptic Equ. 55 (1-3), 173-184, 2010.
  • [13] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28, 297-326, 1973.
  • [14] S.S. Kumar, V. Kumar, V. Ravichandran and N.E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J Inequal. Appl. 2013, Art. ID 176, 13 pages, 2013.
  • [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.
  • [16] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Theory 12 (5), 1179-1191, 2018.
  • [17] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin), 157- 169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1992.
  • [18] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations, Michigan Math. J. 32 (2), 185-195, 1985.
  • [19] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York, 2000.
  • [20] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1), 365-386, 2015.
  • [21] L. Moslehi and A. Ansari, Squared radial Ornstein-Uhlenbeck processes and inverse Laplace transforms of products of confluent hypergeometric functions, Hacet. J. Math. Stat. 46 (3), 409-417, 2017
  • [22] G. Oros, R. Sendrutiu and G.I. Oros, First-order strong differential superordinations, Math. Rep. (Bucur.) 15 (2), 115-124, 2013.
  • [23] K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination, Bull. Austral. Math. Soc. 32 (3), 321-330, 1985.
  • [24] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. 34, 9-15, 2005.
  • [25] V. Ravichandran, F. Rønning and T.N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1-4), 265-280, 1997.
  • [26] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52 (4), 727-749, 2015.
  • [27] T.N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci. 12 (2), 333-340, 1989.
  • [28] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.
  • [29] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Folia Sci. Univ. Tech. Resoviensis, Math. 19, 101-105, 1996.
  • [30] N. Tuneski, T. Bulboacă and B. Jolevska-Tunesk, Sharp results on linear combination of simple expressions of analytic functions, Hacet. J. Math. Stat. 45 (1), 121-128, 2016.
There are 30 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nisha Bohra This is me 0000-0002-8916-5789

Sushil Kumar 0000-0003-4665-8011

V. Ravichandran This is me 0000-0002-3632-7529

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Bohra, N., Kumar, S., & Ravichandran, V. (2019). Some special differential subordinations. Hacettepe Journal of Mathematics and Statistics, 48(4), 1017-1034.
AMA Bohra N, Kumar S, Ravichandran V. Some special differential subordinations. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):1017-1034.
Chicago Bohra, Nisha, Sushil Kumar, and V. Ravichandran. “Some Special Differential Subordinations”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 1017-34.
EndNote Bohra N, Kumar S, Ravichandran V (August 1, 2019) Some special differential subordinations. Hacettepe Journal of Mathematics and Statistics 48 4 1017–1034.
IEEE N. Bohra, S. Kumar, and V. Ravichandran, “Some special differential subordinations”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 1017–1034, 2019.
ISNAD Bohra, Nisha et al. “Some Special Differential Subordinations”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 1017-1034.
JAMA Bohra N, Kumar S, Ravichandran V. Some special differential subordinations. Hacettepe Journal of Mathematics and Statistics. 2019;48:1017–1034.
MLA Bohra, Nisha et al. “Some Special Differential Subordinations”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 1017-34.
Vancouver Bohra N, Kumar S, Ravichandran V. Some special differential subordinations. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):1017-34.