Research Article
BibTex RIS Cite
Year 2019, Volume: 48 Issue: 4, 1046 - 1056, 08.08.2019

Abstract

References

  • [1] B. Bollobás, P. Erdös, and Sarkar, A. Extremal graphs for weights, Discrete Math. 200, 5–19, 1999.
  • [2] B. Borovicanin and T.A. Lampert, On the maximum and minimum Zagreb indices of trees with a given number of vertices of maximum degree, MATCH Commun. Math. Comput. Chem. 74, 81–96, 2015.
  • [3] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs. 5. Three ways to automate finding conjectures, Discrete Math. 276, 81–94, 2004.
  • [4] G. Caporossi, P. Hansen, and D. Vukičević, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63, 441–451, 2010.
  • [5] S. Chen and W. Liu,Extremal Zagreb indices of graphs with a given number of cut edges, Graphs and Combinatorics 30, 109–118, 2014.
  • [6] K.C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285, 57–66, 2004.
  • [7] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52, 103–112, 2004.
  • [8] K.C. Das, I. Gutman, and B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices of trees, MATCH Commun. Math. Comput. Chem. 68, 189–198, 2012.
  • [9] C. Elphick and T. Reti, On the relations between the Zagreb indices, clique numbers and walks in graphs, MATCH Commun. Math. Comput. Chem. 74, 19–34, 2015.
  • [10] Y. Feng, X. Hu, and S. Li, On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math. 110, 667–684, 2010.
  • [11] Y. Feng, X. Hu, and S. Li, Erratum to: On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math. 110, 685, 2010.
  • [12] B. Furtula, I. Gutman, and S. Ediz, On difference of Zagreb indices, Discrete Appl. Math. 178, 83–88, 2014.
  • [13] I. Gutman, B. Furtula, and C. Elphick, Three new/old vertex degree-based topological indices, MATCH Commun. Math. Comput. Chem. 72, 617–682, 2014.
  • [14] I. Gutman, B. Ruščić, N. Trinajstić, and C.F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62, 3399–3405, 1975.
  • [15] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 535–538, 1971.
  • [16] P. Hansen and D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80, 165–168, 2007.
  • [17] B. Horoldagva, L. Buyantogtokh, and S. Dorjsembe, Difference of Zagreb indices and reduced second Zagreb index of cyclic graphs with cut edges, MATCH Commun. Math. Comput. Chem. 78, 337–349, 2017.
  • [18] B. Horoldagva and K.C. Das, On comparing Zagreb indices of graphs, Hacettepe J. of Math. and Stat., 41, 223–230, 2012.
  • [19] B. Horoldagva, K.C. Das, and T. Selenge, Complete characterization of graphs for direct comparing Zagreb indices, Discrete Appl. Math. 215, 146–154, 2016.
  • [20] B. Horoldagva and S.-G. Lee, Comparing Zagreb indices for connected graphs, Discrete Appl. Math. 158, 1073–1078, 2010.
  • [21] U.N. Peled, R. Petreschi, and A. Sterbini, $(n,e)$-graphs with maximum sum of squares of degrees, J. Graph Theory 31, 283–295, 1999.
  • [22] T. Selenge and B. Horoldagva, Maximum Zagreb indices in the class of k-apex trees, Korean J. Math. 23, 401–408, 2015.
  • [23] http://math3.skku.ac.kr
  • [24] D. Stevanović and M. Milanič, Improved inequality between Zagreb indices of trees, MATCH Commun. Math. Comput. Chem. 68, 147–156, 2012.
  • [25] L. Sun and T. Chen, Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees, Discrete. Appl. Math. 157, 1650–1654, 2009.
  • [26] D. Vukičević and A. Graovac, Comparing Zagreb $M_1$ and $M_2$ indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 57, 587–590, 2007.
  • [27] H. Wang and S. Yuan, On the sum of squares of degrees and products of adjacent degrees, Discrete Math. 339, 1212–1220, 2016.

On general reduced second Zagreb index of graphs

Year 2019, Volume: 48 Issue: 4, 1046 - 1056, 08.08.2019

Abstract

Recently, Furtula et al. [B. Furtula, I. Gutman, S. Ediz, On difference of Zagreb indices, Discrete Appl. Math., 2014] introduced a new vertex-degree-based graph invariant "reduced second Zagreb index" in chemical graph theory. Here we generalize the reduced second Zagreb index (call "general reduced second Zagreb index"), denoted by $GRM_{\alpha}(G)$ and is defined as: $GRM_\alpha(G)=\sum_{uv\in E(G)}(d_G(u)+\alpha)(d_G(v)+\alpha),$ where $\alpha$ is any real number and $d_G(v)$ is the degree of the vertex $v$ of $G$. Let $\mathcal{G}_n^k$ be the set of connected graphs of order $n$ with $k$ cut edges. In this paper, we study some properties of $GRM_\alpha(G)$ for connected graphs $G$. Moreover, we obtain the sharp upper bounds on $GRM_\alpha(G)$ in $\mathcal{G}_n^{k}$ for $\alpha\geq-1/2$ and characterize the extremal graphs.

References

  • [1] B. Bollobás, P. Erdös, and Sarkar, A. Extremal graphs for weights, Discrete Math. 200, 5–19, 1999.
  • [2] B. Borovicanin and T.A. Lampert, On the maximum and minimum Zagreb indices of trees with a given number of vertices of maximum degree, MATCH Commun. Math. Comput. Chem. 74, 81–96, 2015.
  • [3] G. Caporossi and P. Hansen, Variable neighborhood search for extremal graphs. 5. Three ways to automate finding conjectures, Discrete Math. 276, 81–94, 2004.
  • [4] G. Caporossi, P. Hansen, and D. Vukičević, Comparing Zagreb indices of cyclic graphs, MATCH Commun. Math. Comput. Chem. 63, 441–451, 2010.
  • [5] S. Chen and W. Liu,Extremal Zagreb indices of graphs with a given number of cut edges, Graphs and Combinatorics 30, 109–118, 2014.
  • [6] K.C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285, 57–66, 2004.
  • [7] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52, 103–112, 2004.
  • [8] K.C. Das, I. Gutman, and B. Horoldagva, Comparison between Zagreb indices and Zagreb coindices of trees, MATCH Commun. Math. Comput. Chem. 68, 189–198, 2012.
  • [9] C. Elphick and T. Reti, On the relations between the Zagreb indices, clique numbers and walks in graphs, MATCH Commun. Math. Comput. Chem. 74, 19–34, 2015.
  • [10] Y. Feng, X. Hu, and S. Li, On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math. 110, 667–684, 2010.
  • [11] Y. Feng, X. Hu, and S. Li, Erratum to: On the extremal Zagreb indices of graphs with cut edges, Acta Appl. Math. 110, 685, 2010.
  • [12] B. Furtula, I. Gutman, and S. Ediz, On difference of Zagreb indices, Discrete Appl. Math. 178, 83–88, 2014.
  • [13] I. Gutman, B. Furtula, and C. Elphick, Three new/old vertex degree-based topological indices, MATCH Commun. Math. Comput. Chem. 72, 617–682, 2014.
  • [14] I. Gutman, B. Ruščić, N. Trinajstić, and C.F. Wilcox, Graph theory and molecular orbitals, XII. Acyclic polyenes, J. Chem. Phys. 62, 3399–3405, 1975.
  • [15] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 535–538, 1971.
  • [16] P. Hansen and D. Vukičević, Comparing the Zagreb indices, Croat. Chem. Acta 80, 165–168, 2007.
  • [17] B. Horoldagva, L. Buyantogtokh, and S. Dorjsembe, Difference of Zagreb indices and reduced second Zagreb index of cyclic graphs with cut edges, MATCH Commun. Math. Comput. Chem. 78, 337–349, 2017.
  • [18] B. Horoldagva and K.C. Das, On comparing Zagreb indices of graphs, Hacettepe J. of Math. and Stat., 41, 223–230, 2012.
  • [19] B. Horoldagva, K.C. Das, and T. Selenge, Complete characterization of graphs for direct comparing Zagreb indices, Discrete Appl. Math. 215, 146–154, 2016.
  • [20] B. Horoldagva and S.-G. Lee, Comparing Zagreb indices for connected graphs, Discrete Appl. Math. 158, 1073–1078, 2010.
  • [21] U.N. Peled, R. Petreschi, and A. Sterbini, $(n,e)$-graphs with maximum sum of squares of degrees, J. Graph Theory 31, 283–295, 1999.
  • [22] T. Selenge and B. Horoldagva, Maximum Zagreb indices in the class of k-apex trees, Korean J. Math. 23, 401–408, 2015.
  • [23] http://math3.skku.ac.kr
  • [24] D. Stevanović and M. Milanič, Improved inequality between Zagreb indices of trees, MATCH Commun. Math. Comput. Chem. 68, 147–156, 2012.
  • [25] L. Sun and T. Chen, Comparing the Zagreb indices for graphs with small difference between the maximum and minimum degrees, Discrete. Appl. Math. 157, 1650–1654, 2009.
  • [26] D. Vukičević and A. Graovac, Comparing Zagreb $M_1$ and $M_2$ indices for acyclic molecules, MATCH Commun. Math. Comput. Chem. 57, 587–590, 2007.
  • [27] H. Wang and S. Yuan, On the sum of squares of degrees and products of adjacent degrees, Discrete Math. 339, 1212–1220, 2016.
There are 27 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Batmend Horoldagva 0000-0003-3417-2612

Lkhagva Buyantogtokh This is me 0000-0002-5685-4879

Kinkar Ch. Das 0000-0003-2576-160X

Publication Date August 8, 2019
Published in Issue Year 2019 Volume: 48 Issue: 4

Cite

APA Horoldagva, B., Buyantogtokh, L., & Das, K. C. (2019). On general reduced second Zagreb index of graphs. Hacettepe Journal of Mathematics and Statistics, 48(4), 1046-1056.
AMA Horoldagva B, Buyantogtokh L, Das KC. On general reduced second Zagreb index of graphs. Hacettepe Journal of Mathematics and Statistics. August 2019;48(4):1046-1056.
Chicago Horoldagva, Batmend, Lkhagva Buyantogtokh, and Kinkar Ch. Das. “On General Reduced Second Zagreb Index of Graphs”. Hacettepe Journal of Mathematics and Statistics 48, no. 4 (August 2019): 1046-56.
EndNote Horoldagva B, Buyantogtokh L, Das KC (August 1, 2019) On general reduced second Zagreb index of graphs. Hacettepe Journal of Mathematics and Statistics 48 4 1046–1056.
IEEE B. Horoldagva, L. Buyantogtokh, and K. C. Das, “On general reduced second Zagreb index of graphs”, Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, pp. 1046–1056, 2019.
ISNAD Horoldagva, Batmend et al. “On General Reduced Second Zagreb Index of Graphs”. Hacettepe Journal of Mathematics and Statistics 48/4 (August 2019), 1046-1056.
JAMA Horoldagva B, Buyantogtokh L, Das KC. On general reduced second Zagreb index of graphs. Hacettepe Journal of Mathematics and Statistics. 2019;48:1046–1056.
MLA Horoldagva, Batmend et al. “On General Reduced Second Zagreb Index of Graphs”. Hacettepe Journal of Mathematics and Statistics, vol. 48, no. 4, 2019, pp. 1046-5.
Vancouver Horoldagva B, Buyantogtokh L, Das KC. On general reduced second Zagreb index of graphs. Hacettepe Journal of Mathematics and Statistics. 2019;48(4):1046-5.