Trigonometrically-fitted higher order two derivative Runge-Kutta method for solving orbital and related periodical IVPs
Year 2019,
Volume: 48 Issue: 5, 1312 - 1323, 08.10.2019
N. A. Ahmad
N. Senu
,
F. Ismail
Abstract
In this paper, a trigonometrically-fitted two derivative Runge-Kutta method (TFTDRK) of high algebraic order for the numerical integration of first order Initial Value Problems (IVPs) which possesses oscillatory solutions is constructed. Using the trigonometrically-fitted property, a sixth order four stage Two Derivative Runge-Kutta (TDRK) method is designed. The numerical experiments are carried out with the comparison with other existing Runge-Kutta methods (RK) to show the accuracy and efficiency of the derived methods.
References
- [1] F. Adel, N. Senu, F. Ismail, and Z.A. Majid, A New Efficient Phase-Fitted and
Amplification-Fitted Runge-Kutta Method for Oscillatory Problems, Int. J. Pure Appl.
Math. 107, 69-86, 2016.
- [2] Z.A. Anastassi and T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the
numerical solution of the Schrödinger equation, J. Math. Chem. 37 (3), 281-293, 2005.
- [3] J.C. Butcher, On Runge-Kutta processes of high order, J. Aust. Math. Soc. 4 (2),
179-194, 1964.
- [4] R.P. Chan and A.Y. Tsai, On explicit two-derivative Runge-Kutta methods, Numer.
Algorithms 53, 171–194, 2010.
- [5] Z. Chen, J. Li, R. Zhang and X. You, Exponentially Fitted Two-Derivative Runge-
Kutta Methods for Simulation of Oscillatory Genetic Regulatory Systems, Comput.
Math. Methods Med. 2015, 689137, 2015.
- [6] Z. Chen, X. You, X. Shu and M. Zhang, A new family of phase-fitted and amplification-
fitted Runge-Kutta type methods for oscillators, J. Appl. Math. 2012, 1-27, 2012.
- [7] M.A. Demba, N. Senu and F. Ismail, Trigonometrically-fitted explicit four-stage
fourth-order Runge-Kutta-Nyström method for the solution of initial value problems
with oscillatory behavior, Global Journal of Pure and Applied Mathematics, 12 (1),
67-80, 2016.
- [8] M.A. Demba, N. Senu and F. Ismail, Fifth-Order Four-Stage Explicit
Trigonometrically-Fitted Runge-Kutta-Nyström Methods, Recent Advances in Math-
ematical Sciences, 27-36, 2016.
- [9] M.A. Demba, N. Senu and F. Ismail, A 5(4) Embedded Pair of Explicit
Trigonometrically-Fitted Runge-Kutta-Nyström Methods for the Numerical Solution
of Oscillatory Initial Value Problems, Math. Comput. Appl. 21 (4), 46, 2016.
- [10] M.A. Demba, N. Senu and F. Ismail, A symplectic explicit trigonometrically-fitted
Runge-Kutta-Nyströ method for the numerical solution of periodic problems, Int. J.
Appl. Eng. Res. 11 (11), 7495-7500, 2016.
- [11] M.A. Demba, N. Senu and F. Ismail, An Embedded 4(3) Pair of Explicit
Trigonometrically-Fitted Runge-Kutta-Nyström Method for Solving Periodic Initial
Value Problems, Appl. Math. Sci. 17, 819-838, 2017.
- [12] Y. Fang, X. You and Q. Ming, Exponentially Fitted Two-Derivative Runge-Kutta
Methods For The Schrödinger Equation, Int. J. Mod. Phys. C 24 (10), 1350073, 2013.
- [13] F.A. Fawzi, N. Senu, F. Ismail, and Z.A. Majid, A Phase-Fitted and Amplification-
Fitted Modified Runge-Kutta Method of Fourth Order for Periodic Initial Value Prob-
lems, Research and Education in Mathematics (ICREM7), 2015 International Con-
ference on. IEEE, 25-28, 2015.
- [14] A.A. Kosti, Z.A. Anastassi and T.E. Simos, An optimized explicit Runge-Kutta-
Nyström method for the numerical solution of orbital and related periodical initial
value problems, Comput. Phys. Commun. 183, 470-479, 2012.
- [15] T. Monovasilis, Z. Kalogiratou and T.E. Simos, Construction of Exponentially Fit-
ted Symplectic Runge-Kutta-Nyström Methods from Partitioned RungeKutta Methods,
Mediterr. J. Math. 13 (4), 2271-2285, 2015.
- [16] P. Pokorny, Continuation of periodic solutions of dissipative and conservative systems:
application to elastic pendulum, Math. Probl. Eng. 2009, Article ID 104547, 2009.
- [17] T.E. Simos, Family of fifth algebraic order trigonometrically fitted Runge-Kutta meth-
ods for the numerical solution of the Schrödinger equation, Comp. Mater. Sci. 34 (4),
342-354, 2005.
- [18] E. Stiefel and D.G. Bettis, Stabilization of Cowell’s method, Numer. Math. 13, 154-
175, 1969.
- [19] H. Van de Vyver, An Explicit Numerov-Type Method for Second-Order Differential
Equations with Oscillating Solutions, Comput. Math. Appl. 53, 1339-1348, 2007.
- [20] Y. Zhang, H. Che, Y. Fang and X. You, A new trigonometrically fitted two-derivative
Runge-Kutta method for the numerical solution of the Schrödinger equation and re-
lated problems, J. Appl. Math. 2013, Article ID 937858, 2013.
Year 2019,
Volume: 48 Issue: 5, 1312 - 1323, 08.10.2019
N. A. Ahmad
N. Senu
,
F. Ismail
References
- [1] F. Adel, N. Senu, F. Ismail, and Z.A. Majid, A New Efficient Phase-Fitted and
Amplification-Fitted Runge-Kutta Method for Oscillatory Problems, Int. J. Pure Appl.
Math. 107, 69-86, 2016.
- [2] Z.A. Anastassi and T.E. Simos, Trigonometrically fitted Runge-Kutta methods for the
numerical solution of the Schrödinger equation, J. Math. Chem. 37 (3), 281-293, 2005.
- [3] J.C. Butcher, On Runge-Kutta processes of high order, J. Aust. Math. Soc. 4 (2),
179-194, 1964.
- [4] R.P. Chan and A.Y. Tsai, On explicit two-derivative Runge-Kutta methods, Numer.
Algorithms 53, 171–194, 2010.
- [5] Z. Chen, J. Li, R. Zhang and X. You, Exponentially Fitted Two-Derivative Runge-
Kutta Methods for Simulation of Oscillatory Genetic Regulatory Systems, Comput.
Math. Methods Med. 2015, 689137, 2015.
- [6] Z. Chen, X. You, X. Shu and M. Zhang, A new family of phase-fitted and amplification-
fitted Runge-Kutta type methods for oscillators, J. Appl. Math. 2012, 1-27, 2012.
- [7] M.A. Demba, N. Senu and F. Ismail, Trigonometrically-fitted explicit four-stage
fourth-order Runge-Kutta-Nyström method for the solution of initial value problems
with oscillatory behavior, Global Journal of Pure and Applied Mathematics, 12 (1),
67-80, 2016.
- [8] M.A. Demba, N. Senu and F. Ismail, Fifth-Order Four-Stage Explicit
Trigonometrically-Fitted Runge-Kutta-Nyström Methods, Recent Advances in Math-
ematical Sciences, 27-36, 2016.
- [9] M.A. Demba, N. Senu and F. Ismail, A 5(4) Embedded Pair of Explicit
Trigonometrically-Fitted Runge-Kutta-Nyström Methods for the Numerical Solution
of Oscillatory Initial Value Problems, Math. Comput. Appl. 21 (4), 46, 2016.
- [10] M.A. Demba, N. Senu and F. Ismail, A symplectic explicit trigonometrically-fitted
Runge-Kutta-Nyströ method for the numerical solution of periodic problems, Int. J.
Appl. Eng. Res. 11 (11), 7495-7500, 2016.
- [11] M.A. Demba, N. Senu and F. Ismail, An Embedded 4(3) Pair of Explicit
Trigonometrically-Fitted Runge-Kutta-Nyström Method for Solving Periodic Initial
Value Problems, Appl. Math. Sci. 17, 819-838, 2017.
- [12] Y. Fang, X. You and Q. Ming, Exponentially Fitted Two-Derivative Runge-Kutta
Methods For The Schrödinger Equation, Int. J. Mod. Phys. C 24 (10), 1350073, 2013.
- [13] F.A. Fawzi, N. Senu, F. Ismail, and Z.A. Majid, A Phase-Fitted and Amplification-
Fitted Modified Runge-Kutta Method of Fourth Order for Periodic Initial Value Prob-
lems, Research and Education in Mathematics (ICREM7), 2015 International Con-
ference on. IEEE, 25-28, 2015.
- [14] A.A. Kosti, Z.A. Anastassi and T.E. Simos, An optimized explicit Runge-Kutta-
Nyström method for the numerical solution of orbital and related periodical initial
value problems, Comput. Phys. Commun. 183, 470-479, 2012.
- [15] T. Monovasilis, Z. Kalogiratou and T.E. Simos, Construction of Exponentially Fit-
ted Symplectic Runge-Kutta-Nyström Methods from Partitioned RungeKutta Methods,
Mediterr. J. Math. 13 (4), 2271-2285, 2015.
- [16] P. Pokorny, Continuation of periodic solutions of dissipative and conservative systems:
application to elastic pendulum, Math. Probl. Eng. 2009, Article ID 104547, 2009.
- [17] T.E. Simos, Family of fifth algebraic order trigonometrically fitted Runge-Kutta meth-
ods for the numerical solution of the Schrödinger equation, Comp. Mater. Sci. 34 (4),
342-354, 2005.
- [18] E. Stiefel and D.G. Bettis, Stabilization of Cowell’s method, Numer. Math. 13, 154-
175, 1969.
- [19] H. Van de Vyver, An Explicit Numerov-Type Method for Second-Order Differential
Equations with Oscillating Solutions, Comput. Math. Appl. 53, 1339-1348, 2007.
- [20] Y. Zhang, H. Che, Y. Fang and X. You, A new trigonometrically fitted two-derivative
Runge-Kutta method for the numerical solution of the Schrödinger equation and re-
lated problems, J. Appl. Math. 2013, Article ID 937858, 2013.