Araştırma Makalesi
BibTex RIS Kaynak Göster

Generalizations of prime submodules

Yıl 2015, Cilt: 44 Sayı: 3, 587 - 595, 01.06.2015

Öz

Let R be a commutative ring with identity and M a unitary R-module,
and n > 1 an integer number. As a generalization of the concept of
prime submodules, a proper submodule N of M will be called n-almost
prime, if for r ∈ R and x ∈ M with rx ∈ N \ (N : M)
n−1N, either
x ∈ N or r ∈ (N : M). We study n-almost prime submodules, in this
paper.

Kaynakça

  • ...
Yıl 2015, Cilt: 44 Sayı: 3, 587 - 595, 01.06.2015

Öz

Kaynakça

  • ...
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

S. Moradi Bu kişi benim

A. Azizi

Yayımlanma Tarihi 1 Haziran 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 44 Sayı: 3

Kaynak Göster

APA Moradi, S., & Azizi, A. (2015). Generalizations of prime submodules. Hacettepe Journal of Mathematics and Statistics, 44(3), 587-595.
AMA Moradi S, Azizi A. Generalizations of prime submodules. Hacettepe Journal of Mathematics and Statistics. Haziran 2015;44(3):587-595.
Chicago Moradi, S., ve A. Azizi. “Generalizations of Prime Submodules”. Hacettepe Journal of Mathematics and Statistics 44, sy. 3 (Haziran 2015): 587-95.
EndNote Moradi S, Azizi A (01 Haziran 2015) Generalizations of prime submodules. Hacettepe Journal of Mathematics and Statistics 44 3 587–595.
IEEE S. Moradi ve A. Azizi, “Generalizations of prime submodules”, Hacettepe Journal of Mathematics and Statistics, c. 44, sy. 3, ss. 587–595, 2015.
ISNAD Moradi, S. - Azizi, A. “Generalizations of Prime Submodules”. Hacettepe Journal of Mathematics and Statistics 44/3 (Haziran 2015), 587-595.
JAMA Moradi S, Azizi A. Generalizations of prime submodules. Hacettepe Journal of Mathematics and Statistics. 2015;44:587–595.
MLA Moradi, S. ve A. Azizi. “Generalizations of Prime Submodules”. Hacettepe Journal of Mathematics and Statistics, c. 44, sy. 3, 2015, ss. 587-95.
Vancouver Moradi S, Azizi A. Generalizations of prime submodules. Hacettepe Journal of Mathematics and Statistics. 2015;44(3):587-95.