Composite quantile regression can be more efficient and sometimes arbitrarily more efficient than least squares for non-normal random errors,
and almost as efficient for normal random errors. Therefore, we extend composite quantile regression method to linear errors-in-variables
models, and prove the asymptotic normality of the proposed estimators. Simulation results and a real dataset are also given to illustrate
our the proposed methods.
Birincil Dil | İngilizce |
---|---|
Konular | İstatistik |
Bölüm | İstatistik |
Yazarlar | |
Yayımlanma Tarihi | 1 Haziran 2015 |
Yayımlandığı Sayı | Yıl 2015 Cilt: 44 Sayı: 3 |