Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 49 Sayı: 1, 96 - 105, 06.02.2020
https://doi.org/10.15672/HJMS.2019.665

Öz

Kaynakça

  • [1] M. Abbasi and B. Mashayekhy, On the capacity and depth of compact surfaces, arXiv:1612.03335v1.
  • [2] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, De Gruyter, vol. 2, Berlin, 1991.
  • [3] H.J. Baues, Homotopy Type and Homology, Oxford University Press Inc., New York, 1996.
  • [4] I. Berstein and T. Ganea, Remark on spaces dominated by manifolds, Fund. Math. 47, 45–56, 1959.
  • [5] K. Borsuk, Some problems in the theory of shape of compacta, Russian Math. Surveys, 34 (6), 24–26, 1979.
  • [6] J.M. Cohen, Complexes dominated by a 2-complex, Topology, 16, 409–415, 1977.
  • [7] M.N. Dyer and A.J. Sieradski, Trees of homotopy types of two-dimensional CWcomplexes, Comment. Math. Helv. 48, 31–44, 1973.
  • [8] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
  • [9] A. Hatcher, The Classification of 3-Manifolds - A Brief Overview, https://pi.math.cornell.edu/ hatcher/Papers/3Msurvey.pdf.
  • [10] P.J. Hilton, An Introduction to Homotopy Theory, Cambridge University Press, 1961.
  • [11] Y. Kodama, J. Ono and T. Watanabe, AR associated with ANR-sequence and shape, General Topology Appl. 9 (7), 1–88, 1978.
  • [12] D. Kolodziejczyk, There exists a polyhedron dominating infinitely many different homotopy types, Fund. Math. 151, 39–46, 1996.
  • [13] D. Kolodziejczyk, Polyhedra with finite fundamental group dominate only finitely many different homotopy types, Fund. Math. 180, 1–9, 2003.
  • [14] D. Kolodziejczyk, Polyhedra dominating finitely many different homotopy types, Topology Appl. 146-147, 583–592, 2005.
  • [15] S. Mardesic and J. Segal, Shape Theory. The Inverse System Approach, North-Holland Mathematical Library, vol. 26, North-Holland, Amsterdam, 1982.
  • [16] M. Mather, Counting homotopy types of manifolds, Topology, 4, 93–94, 1965.
  • [17] M. Mohareri, B. Mashayekhy and H. Mirebrahimi, On The Capacity of Eilenberg- MacLane and Moore Spaces, J. Algebraic Systems, 6 (2), 131–146, 2019.
  • [18] M. Mohareri, B. Mashayekhy and H. Mirebrahimi, The Capacity of Wedge Sum of Spheres of Different Dimensions, Topology Appl. 246, 1–8, 2018.
  • [19] N.E. Steenrod, The Topology of Fiber Bundles, Princeton, 1951.
  • [20] R.G. Swan, Groups of cohomological dimension one, J. Algebra, 12, 585–601, 1969.
  • [21] C.T.C.Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81, 56–69, 1965.

The capacity of some classes of polyhedra

Yıl 2020, Cilt: 49 Sayı: 1, 96 - 105, 06.02.2020
https://doi.org/10.15672/HJMS.2019.665

Öz

K. Borsuk in 1979, in Topological Conference in Moscow, introduced the concept of the capacity of a compactum.  In this paper, we compute the capacity of the product of two spheres of the same or different dimensions and the capacity of lense spaces. Also, we present an upper bound for the capacity of a  $\mathbb{Z}_n$-complex, i.e.,  a connected finite 2-dimensional CW-complex with finite cyclic fundamental group $\mathbb{Z}_n$.

Kaynakça

  • [1] M. Abbasi and B. Mashayekhy, On the capacity and depth of compact surfaces, arXiv:1612.03335v1.
  • [2] H.J. Baues, Combinatorial homotopy and 4-dimensional complexes, De Gruyter, vol. 2, Berlin, 1991.
  • [3] H.J. Baues, Homotopy Type and Homology, Oxford University Press Inc., New York, 1996.
  • [4] I. Berstein and T. Ganea, Remark on spaces dominated by manifolds, Fund. Math. 47, 45–56, 1959.
  • [5] K. Borsuk, Some problems in the theory of shape of compacta, Russian Math. Surveys, 34 (6), 24–26, 1979.
  • [6] J.M. Cohen, Complexes dominated by a 2-complex, Topology, 16, 409–415, 1977.
  • [7] M.N. Dyer and A.J. Sieradski, Trees of homotopy types of two-dimensional CWcomplexes, Comment. Math. Helv. 48, 31–44, 1973.
  • [8] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.
  • [9] A. Hatcher, The Classification of 3-Manifolds - A Brief Overview, https://pi.math.cornell.edu/ hatcher/Papers/3Msurvey.pdf.
  • [10] P.J. Hilton, An Introduction to Homotopy Theory, Cambridge University Press, 1961.
  • [11] Y. Kodama, J. Ono and T. Watanabe, AR associated with ANR-sequence and shape, General Topology Appl. 9 (7), 1–88, 1978.
  • [12] D. Kolodziejczyk, There exists a polyhedron dominating infinitely many different homotopy types, Fund. Math. 151, 39–46, 1996.
  • [13] D. Kolodziejczyk, Polyhedra with finite fundamental group dominate only finitely many different homotopy types, Fund. Math. 180, 1–9, 2003.
  • [14] D. Kolodziejczyk, Polyhedra dominating finitely many different homotopy types, Topology Appl. 146-147, 583–592, 2005.
  • [15] S. Mardesic and J. Segal, Shape Theory. The Inverse System Approach, North-Holland Mathematical Library, vol. 26, North-Holland, Amsterdam, 1982.
  • [16] M. Mather, Counting homotopy types of manifolds, Topology, 4, 93–94, 1965.
  • [17] M. Mohareri, B. Mashayekhy and H. Mirebrahimi, On The Capacity of Eilenberg- MacLane and Moore Spaces, J. Algebraic Systems, 6 (2), 131–146, 2019.
  • [18] M. Mohareri, B. Mashayekhy and H. Mirebrahimi, The Capacity of Wedge Sum of Spheres of Different Dimensions, Topology Appl. 246, 1–8, 2018.
  • [19] N.E. Steenrod, The Topology of Fiber Bundles, Princeton, 1951.
  • [20] R.G. Swan, Groups of cohomological dimension one, J. Algebra, 12, 585–601, 1969.
  • [21] C.T.C.Wall, Finiteness conditions for CW-complexes, Ann. of Math. 81, 56–69, 1965.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Matematik
Yazarlar

Mojtaba Mohareri Bu kişi benim 0000-0002-6725-2160

Behrooz Mashayekhy Bu kişi benim 0000-0001-5243-0641

Hanieh Mirebrahimi Bu kişi benim 0000-0002-4212-9465

Yayımlanma Tarihi 6 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 49 Sayı: 1

Kaynak Göster

APA Mohareri, M., Mashayekhy, B., & Mirebrahimi, H. (2020). The capacity of some classes of polyhedra. Hacettepe Journal of Mathematics and Statistics, 49(1), 96-105. https://doi.org/10.15672/HJMS.2019.665
AMA Mohareri M, Mashayekhy B, Mirebrahimi H. The capacity of some classes of polyhedra. Hacettepe Journal of Mathematics and Statistics. Şubat 2020;49(1):96-105. doi:10.15672/HJMS.2019.665
Chicago Mohareri, Mojtaba, Behrooz Mashayekhy, ve Hanieh Mirebrahimi. “The Capacity of Some Classes of Polyhedra”. Hacettepe Journal of Mathematics and Statistics 49, sy. 1 (Şubat 2020): 96-105. https://doi.org/10.15672/HJMS.2019.665.
EndNote Mohareri M, Mashayekhy B, Mirebrahimi H (01 Şubat 2020) The capacity of some classes of polyhedra. Hacettepe Journal of Mathematics and Statistics 49 1 96–105.
IEEE M. Mohareri, B. Mashayekhy, ve H. Mirebrahimi, “The capacity of some classes of polyhedra”, Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, ss. 96–105, 2020, doi: 10.15672/HJMS.2019.665.
ISNAD Mohareri, Mojtaba vd. “The Capacity of Some Classes of Polyhedra”. Hacettepe Journal of Mathematics and Statistics 49/1 (Şubat 2020), 96-105. https://doi.org/10.15672/HJMS.2019.665.
JAMA Mohareri M, Mashayekhy B, Mirebrahimi H. The capacity of some classes of polyhedra. Hacettepe Journal of Mathematics and Statistics. 2020;49:96–105.
MLA Mohareri, Mojtaba vd. “The Capacity of Some Classes of Polyhedra”. Hacettepe Journal of Mathematics and Statistics, c. 49, sy. 1, 2020, ss. 96-105, doi:10.15672/HJMS.2019.665.
Vancouver Mohareri M, Mashayekhy B, Mirebrahimi H. The capacity of some classes of polyhedra. Hacettepe Journal of Mathematics and Statistics. 2020;49(1):96-105.