Yıl 2020, Cilt 49 , Sayı 2, Sayfalar 843 - 853 2020-04-02

On submanifolds of Kenmotsu manifold with Torqued vector field

Halil İbrahim YOLDAŞ [1] , Şemsi Eken meriç [2] , Erol YAŞAR [3]


In this paper, we consider the submanifold $M$ of a Kenmotsu manifold $\tilde M$ endowed with torqued vector field $\mathcal{T}$. Also, we study the submanifold $M$ admitting a Ricci soliton of both Kenmotsu manifold $\tilde M$ and Kenmotsu space form $\tilde M(c)$. Indeed, we provide some necessary conditions for which such a submanifold $M$ is an $\eta-$Einstein. We have presented some related results and classified. Finally, we obtain an important characterization which classifies the submanifold $M$ admitting a Ricci soliton of Kenmotsu space form $\tilde M(c)$.
Kenmotsu manifold, Ricci soliton, Torqued vector field
  • [1] C. S. Bagewadi, and G. Ingalahalli, Ricci Solitons in Lorentzian α−Sasakian Manifolds, Acta Math. Acad. Paedagog. Nyházi. (N.S), 28 (1), 59-68, 2012.
  • [2] C. L. Bejan and M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom., 46 , 117- 127, 2014.
  • [3] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
  • [4] B.-Y. Chen, Geometry of Submanifolds, Marcel Dekker, New York, 1973.
  • [5] B.-Y. Chen, Some Results on Concircular Vector Fields and Their Applications to Ricci Solitons, Bull. Korean Math. Soc., 52 (5), 1535-1547, 2015.
  • [6] B.-Y. Chen, Rectifying Submanifolds of Riemannian Manifolds and Torqued Vector Fields, Kragujevac J. Math., 41 (1), 93-103, 2017.
  • [7] B.-Y. Chen, Classification of Torqued Vector Fields and Its Applications to Ricci Solitons, Kragujevac J. Math., 41 (2), 239-250, 2017.
  • [8] J. T. Cho and J. Park, Gradient Ricci Solitons with Semi-Symmetry, Bull. Korean Math. Soc., 51 (1), 213-219, 2014.
  • [9] A. Ghosh, Certain Contact Metrics as Ricci Almost Solitons, Results Maths., 65, 81-94, 2014.
  • [10] A. Ghosh, Kenmotsu 3-Metric as a Ricci Soliton, Chaos, Solitons & Fractals, 44 (8), 647-650, 2011.
  • [11] R. S. Hamilton, Three-Manifolds with Positive Ricci Curvature, J. Diff. Geom., 17 (2), 255-306, 1982.
  • [12] R. S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity (Santa Cruz, CA, 1986), Contemp. Math., A.M.S, 71, 237-262, 1988.
  • [13] S. K. Hui, S. K. Yadav and A. Patra, Almost Conformal Ricci Solitons on f−Kenmotsu Manifolds, Khayyam J. Math., 5 (1), 89-104, 2019.
  • [14] J.-B. Jun, U. C. De and G. Pathak, On Kenmotsu Manifolds, J. Korean Math. Soc., 42 (3), 435-445, 2005.
  • [15] K. Kenmotsu, A Class of Almost Contact Riemannian Manifolds, Tohoku Math. J., 24, 93-103, 1972.
  • [16] H. G. Nagaraja and C. R. Premalatha, Ricci Solitons in Kenmotsu Manifolds, J. Math. Anal., 3 (2), 18-24, 2012.
  • [17] S. Y. Perktaş and S. Keleş, Ricci Solitons in 3-Dimensional Normal Almost Paracontact Metric Manifolds, Int. Electron. J. Geom., 8 (2), 34-45, 2015.
  • [18] R. Sharma, Certain Results on K-Contact and (k, μ)−Contact Manifolds, J. Geom., 89, (1-2), 138-147, 2008.
  • [19] R. Sharma and A. Ghosh, Sasakian 3-Manifolds as a Ricci Soliton Represents the Heisenberg Group, Int. J. Geom. Methods Mod. Phys, 8 (1), 149-154., 2011.
  • [20] S. Sular and C. Özgür, On Some Submanifolds of Kenmotsu Manifolds, Chaos, Solitons & Fractals, 4 (2), 1990-1995, 2009.
  • [21] M. M. Tripathi, Ricci Solitons in Contact Metric Manifolds, arXiv:0801.4222v1, [math DG], 2008.
  • [22] K. Yano and M. Kon, Structures on Manifolds, Series in Mathematics, World Scientific Publishing, Springer, 1984.
  • [23] H. İ. Yoldaş, Ş. E. Meriç, E. Yaşar, On Generic Submanifold of Sasakian Manifold with Concurrent Vector Field, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2), 1983-1994, 2019.
Birincil Dil en
Konular Matematik
Bölüm Matematik
Yazarlar

Orcid: 0000-0002-3238-6484
Yazar: Halil İbrahim YOLDAŞ (Sorumlu Yazar)
Kurum: MERSIN UNIVERSITY
Ülke: Turkey


Orcid: 0000-0003-2783-1149
Yazar: Şemsi Eken meriç
Kurum: MERSIN UNIVERSITY
Ülke: Turkey


Orcid: 0000-0001-8716-0901
Yazar: Erol YAŞAR
Kurum: MERSIN UNIVERSITY
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 2 Nisan 2020

Bibtex @araştırma makalesi { hujms479184, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe Üniversitesi}, year = {2020}, volume = {49}, pages = {843 - 853}, doi = {10.15672/hujms.479184}, title = {On submanifolds of Kenmotsu manifold with Torqued vector field}, key = {cite}, author = {YOLDAŞ, Halil İbrahim and Eken meriç, Şemsi and YAŞAR, Erol} }
APA YOLDAŞ, H , Eken meriç, Ş , YAŞAR, E . (2020). On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics , 49 (2) , 843-853 . DOI: 10.15672/hujms.479184
MLA YOLDAŞ, H , Eken meriç, Ş , YAŞAR, E . "On submanifolds of Kenmotsu manifold with Torqued vector field". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 843-853 <https://dergipark.org.tr/tr/pub/hujms/issue/53568/479184>
Chicago YOLDAŞ, H , Eken meriç, Ş , YAŞAR, E . "On submanifolds of Kenmotsu manifold with Torqued vector field". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 843-853
RIS TY - JOUR T1 - On submanifolds of Kenmotsu manifold with Torqued vector field AU - Halil İbrahim YOLDAŞ , Şemsi Eken meriç , Erol YAŞAR Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.479184 DO - 10.15672/hujms.479184 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 843 EP - 853 VL - 49 IS - 2 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.479184 UR - https://doi.org/10.15672/hujms.479184 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics On submanifolds of Kenmotsu manifold with Torqued vector field %A Halil İbrahim YOLDAŞ , Şemsi Eken meriç , Erol YAŞAR %T On submanifolds of Kenmotsu manifold with Torqued vector field %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 2 %R doi: 10.15672/hujms.479184 %U 10.15672/hujms.479184
ISNAD YOLDAŞ, Halil İbrahim , Eken meriç, Şemsi , YAŞAR, Erol . "On submanifolds of Kenmotsu manifold with Torqued vector field". Hacettepe Journal of Mathematics and Statistics 49 / 2 (Nisan 2020): 843-853 . https://doi.org/10.15672/hujms.479184
AMA YOLDAŞ H , Eken meriç Ş , YAŞAR E . On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 843-853.
Vancouver YOLDAŞ H , Eken meriç Ş , YAŞAR E . On submanifolds of Kenmotsu manifold with Torqued vector field. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 853-843.