Yıl 2020, Cilt 49 , Sayı 2, Sayfalar 754 - 765 2020-04-02

Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs

Hafiz Muhammad Afzal SİDDİQUİ [1]


The Sierpinski fractal or Sierpinski gasket and generalized Sierpinski graphs are objects of great interest in dynamical systems and probability. In this paper, we consider the Sierpinski gasket graph $S_{n}$, the generalized Sierpinski graphs $S(n,C_{3})$ and $S(n,C_{4})$. We provide explicit computing formulae for Zagreb indices, multiple Zagreb indices and Zagreb polynomials of Sierpinski graphs.
Sierpinski gasket graph, generalized Sierpinski graph, topological indices, Zagreb index, augmented Zagreb index, Zagreb polynomials
  • [1] H. Ali, A.Q. Baig and M.K. Shafiq, On topological properties of hierarchical interconnection networks, J. Appl. Math. Comput. 55 (1-2), 313–334, doi:10.1007/s12190- 016-1038-3, 2016.
  • [2] A.T. Balaban, I. Motoc, D. Bonchev and O. Makenyan, Topological indices for structure-activity correlations, Topics Curr. Chem. 114, 21–55, 1983.
  • [3] G. Caporossi, P. Hansen and D. Vukičević, Comparing of Zagreb indices of cylic graphs, MATCH Commun. Math. Comput. Chem. 63, 441–451, 2010.
  • [4] K.C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52, 103–112, 2004.
  • [5] M.V. Diudea, (Ed.), QSPR/QSAR Studies by molecular descriptors, NOVA, New York, 2001.
  • [6] M.R. Farahani, H.M.A. Siddiqui, Sh. Baby, M. Imran and M.K. Siddiqui, The Second and Second Sum connectivity Indices of $TUC_{4}C_{8}$ Nanutubes, J. Optoelectron. Bio. Mater. , 8 (3), 107–111, 2016.
  • [7] H. Fath-tabar, Zagreb polynomials and PI indices of some nanostructures, Digest. J. Nanomater. Bios. 4, 189–191, 2009.
  • [8] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53, 1184- 1190, 2015.
  • [9] B. Furtula, A. Graovac and D. Vukičević, Augmented Zagreb index, J. Math. Chem. 48, 370–380, 2010.
  • [10] B. Furtula, I. Gutman and M. Dehmer, On structural-sensitivity of degree-based topological indices, Appl.Math. Comput. 219, 8973–8978, 2013.
  • [11] M. Ghorbani and N. Azimi, Note on multiple Zagre indices, Iran. J. Math. Chem. 3, 137–143, 2012.
  • [12] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86, 351–361, 2013.
  • [13] I. Gutman, An exceptional property of first Zagreb index, MATCH Commun. Math. Comput. Chem. 72, 733–740, 2014.
  • [14] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 83–92, 2004.
  • [15] I. Gutman and B. Furtula, Ž. K. Vukićević and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74, 5–16, 2015.
  • [16] I. Gutman and O. Polansky, Mathematical Concepts in Organic Chemistry, Springer- Verlag, Berlin, 1986.
  • [17] I. Gutman and J. Tošović, Testing the quality of molecular structures descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc. 78, 805–810, 2013.
  • [18] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternate hydrocarbons, Chem. Phy. Lett. 17, 535–538, 1972.
  • [19] I. Gutman, B. Ruščić, N. Trinajstić and C.F. wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62, 1692–1704, 1975.
  • [20] S. Hayat and H.M.A. Siddiqui, On bipartite edge frustration of carbon and boron nanotubes, Studia UBB Chemia, LXI(1), 283–290, 2016.
  • [21] A.M. Hinz and D. Parisse, Coloring Hanoi and Sierpiński graphs, Disc. Math. 312 (9), 1521–1535, 2012.
  • [22] M. Imran, A.Q. Baig, H. Ali and S.U. Rehman, On topological properties of poly honeycomb networks, Period. Math. Hungr. 73 (1), 100–119, 2016.
  • [23] A. Jonsson, A trace theorem for the Drichlet form on the Sierpiński gasket, Math. Z. 250, 599–609, 2005.
  • [24] H. Narumi and H. Katayama, Simple topological index, a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16, 209–214, 1984.
  • [25] S. Nikolić, G. Kovačević, A. Milič and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76, 113–124, 2003.
  • [26] R.S. Scorer, P.M. Grundy and C.A.B. Smith, Some binary games, Math. Gaz. 28, 96–103, 1944.
  • [27] G.H. Shirdel, H. Rezapour and A.M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem. 4, 213–220, 213.
  • [28] S. Wang, M.R. Farahani and A.Q. Baig, The Sadhana polynomial and Sadhana index of polycyclic aromatic hydrocarbon PAHk, J. Chem. Pharm. Res. 8 (6), 526–531, 2016.
  • [29] K. Xu and K.Ch. Das, Zagreb indices and polynomials of $TUHRC_{4}$ and $TUSC_{4}C_{8}$ nanotubes, MATCH Commun. Math. Comput. Chem. 68, 257–272, 2012.
  • [30] L. Yang, X. Ai and L. Zhang, The Zagreb coindices of a type of composite graph, Hacettepe J. Math. Stat. 45 (4), 1135–1145, 2016.
  • [31] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52, 113–118, 2004.
Birincil Dil en
Konular Matematik
Bölüm Matematik
Yazarlar

Orcid: 0000-0003-1794-6460
Yazar: Hafiz Muhammad Afzal SİDDİQUİ
Kurum: COMSATS University Islamabad
Ülke: Pakistan


Tarihler

Yayımlanma Tarihi : 2 Nisan 2020

Bibtex @araştırma makalesi { hujms623990, journal = {Hacettepe Journal of Mathematics and Statistics}, issn = {2651-477X}, eissn = {2651-477X}, address = {}, publisher = {Hacettepe Üniversitesi}, year = {2020}, volume = {49}, pages = {754 - 765}, doi = {10.15672/hujms.623990}, title = {Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs}, key = {cite}, author = {SİDDİQUİ, Hafiz Muhammad Afzal} }
APA SİDDİQUİ, H . (2020). Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs. Hacettepe Journal of Mathematics and Statistics , 49 (2) , 754-765 . DOI: 10.15672/hujms.623990
MLA SİDDİQUİ, H . "Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 754-765 <https://dergipark.org.tr/tr/pub/hujms/issue/53568/623990>
Chicago SİDDİQUİ, H . "Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs". Hacettepe Journal of Mathematics and Statistics 49 (2020 ): 754-765
RIS TY - JOUR T1 - Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs AU - Hafiz Muhammad Afzal SİDDİQUİ Y1 - 2020 PY - 2020 N1 - doi: 10.15672/hujms.623990 DO - 10.15672/hujms.623990 T2 - Hacettepe Journal of Mathematics and Statistics JF - Journal JO - JOR SP - 754 EP - 765 VL - 49 IS - 2 SN - 2651-477X-2651-477X M3 - doi: 10.15672/hujms.623990 UR - https://doi.org/10.15672/hujms.623990 Y2 - 2019 ER -
EndNote %0 Hacettepe Journal of Mathematics and Statistics Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs %A Hafiz Muhammad Afzal SİDDİQUİ %T Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs %D 2020 %J Hacettepe Journal of Mathematics and Statistics %P 2651-477X-2651-477X %V 49 %N 2 %R doi: 10.15672/hujms.623990 %U 10.15672/hujms.623990
ISNAD SİDDİQUİ, Hafiz Muhammad Afzal . "Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs". Hacettepe Journal of Mathematics and Statistics 49 / 2 (Nisan 2020): 754-765 . https://doi.org/10.15672/hujms.623990
AMA SİDDİQUİ H . Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 754-765.
Vancouver SİDDİQUİ H . Computation of Zagreb indices and Zagreb polynomials of Sierpinski graphs. Hacettepe Journal of Mathematics and Statistics. 2020; 49(2): 765-754.