Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 2, 854 - 868, 02.04.2020
https://doi.org/10.15672/hujms.624015

Abstract

References

  • [1] A.R. Aliabad, F. Azarpanah and M. Namdari, Rings of continuous functions vanishing at infinity, Comment. Mat. Univ. Carolinae 45 (3), 519–533, 2004.
  • [2] R.N. Ball and J. Walters-Wayland, $C$- and $C^*$-quotients in pointfree topology, Dissertationes Math. (Rozprawy Mat.) 412, 1–61, 2002.
  • [3] B. Banaschewski, Remarks Concerning Certain Function Rings in Pointfree Topology, Appl. Categor. Struct, 26 (5), 873–881, 2018.
  • [4] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathematica (Series B) 12, 1–96, 1997.
  • [5] T. Dube, On the ideal of functions with compact support in pointfree function rings, Acta Math. Hungar 129 (3), 205–226, 2010.
  • [6] T. Dube, Extending and contracting maximal ideals in the function rings of pointfree topology, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) No.4, 365–374, 2012.
  • [7] A.A. Estaji, M. Abedi and A. Mahmoudi Darghadam, On self-injectivity of the $f$-ring ${\mathbf Frm}(\mathcal{P}(\mathbb{R}), L)$, Math. Slovaca Accepted.
  • [8] A.A. Estaji and A. Mahmoudi Darghadam, Rings of continuous functions vanishing at infinity on a frame, Quaest. Math., 2018, DOI:10.2989/16073606.2018.1509151.
  • [9] A.A. Estaji and A. Mahmoudi Darghadam, Ring of real measurable functions vanishing at infinity on a measurable space, submitted.
  • [10] A.As. Estaji, E. Hashemi and A.A. Estaji, On property (A) and the socle of the $f$-ring ${\mathbf Frm}(\mathcal{P}(\mathbb{R}), L)$, Categ. Gen. Algebr. Struct. Appl. 8 (1), 61–80, January 2018.
  • [11] A. Karimi Feizabadi, A.A. Estaji and M. Zarghani, The ring of real-valued functions on a frame, Categ. Gen. Algebr. Struct. Appl. 5 (1), 85–102, July 2016.
  • [12] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, Springer Basel, 2012.

Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity

Year 2020, Volume: 49 Issue: 2, 854 - 868, 02.04.2020
https://doi.org/10.15672/hujms.624015

Abstract

Let $\mathcal F_{\mathcal{P}}( L)$ be the set of all frame maps from $\mathcal P(\mathbb R)$ to $L$, which is an $f$-ring. In this paper, we introduce the subrings $\mathcal F_{{\mathcal{P}}_{\infty}}( L)$ of all frame maps from $\mathcal P(\mathbb R)$ to $L$ which vanish at infinity and $\mathcal F_{{\mathcal{P}}_{K}}( L)$ of all frame maps from $\mathcal P(\mathbb R)$ to $L$ with compact support. We prove $\mathcal F_{{\mathcal{P}}_{\infty}}( L)$ is a subring of $\mathcal F_{\mathcal{P}}(L)$ that may not be an ideal of $\mathcal F_{\mathcal{P}}(L)$ in general and we obtain necessary and sufficient conditions for $\mathcal F_{{\mathcal{P}}_{\infty}}( L)$ to be an ideal of $\mathcal F_{\mathcal{P}}( L)$. Also, we show that $\mathcal F_{{\mathcal{P}}_{K}}( L)$ is an ideal of $\mathcal F_{\mathcal{P}}( L)$ and it is a regular ring. For $f\in\mathcal F_{\mathcal{P}}( L)$, we obtain a sufficient condition for $f$ to be an element of $F_{{\mathcal{P}}_{\infty}}( L)$ ($\mathcal F_{{\mathcal{P}}_{K}}( L)$). Next, we give necessary and sufficient conditions for a frame to be compact. We introduce $\mathcal F_{\mathcal{P}}$-pseudocompact and next we establish equivalent condition for an $\mathcal F_{\mathcal{P}}$-pseudocompact frame to be a compact frame. Finally, we study when for some frame $L$ with $\mathcal F_{{\mathcal{P}}_{\infty}} (L)\neq(0)$, there is a locally compact frame $M$ such that $\mathcal F_{{\mathcal{P}}_{\infty}}( L)\cong\mathcal F_{{\mathcal{P}}_{\infty}}(M)$ and $\mathcal F_{{\mathcal{P}}_{K}}( L)\cong\mathcal F_{{\mathcal{P}}_{K}}(M)$.

References

  • [1] A.R. Aliabad, F. Azarpanah and M. Namdari, Rings of continuous functions vanishing at infinity, Comment. Mat. Univ. Carolinae 45 (3), 519–533, 2004.
  • [2] R.N. Ball and J. Walters-Wayland, $C$- and $C^*$-quotients in pointfree topology, Dissertationes Math. (Rozprawy Mat.) 412, 1–61, 2002.
  • [3] B. Banaschewski, Remarks Concerning Certain Function Rings in Pointfree Topology, Appl. Categor. Struct, 26 (5), 873–881, 2018.
  • [4] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathematica (Series B) 12, 1–96, 1997.
  • [5] T. Dube, On the ideal of functions with compact support in pointfree function rings, Acta Math. Hungar 129 (3), 205–226, 2010.
  • [6] T. Dube, Extending and contracting maximal ideals in the function rings of pointfree topology, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) No.4, 365–374, 2012.
  • [7] A.A. Estaji, M. Abedi and A. Mahmoudi Darghadam, On self-injectivity of the $f$-ring ${\mathbf Frm}(\mathcal{P}(\mathbb{R}), L)$, Math. Slovaca Accepted.
  • [8] A.A. Estaji and A. Mahmoudi Darghadam, Rings of continuous functions vanishing at infinity on a frame, Quaest. Math., 2018, DOI:10.2989/16073606.2018.1509151.
  • [9] A.A. Estaji and A. Mahmoudi Darghadam, Ring of real measurable functions vanishing at infinity on a measurable space, submitted.
  • [10] A.As. Estaji, E. Hashemi and A.A. Estaji, On property (A) and the socle of the $f$-ring ${\mathbf Frm}(\mathcal{P}(\mathbb{R}), L)$, Categ. Gen. Algebr. Struct. Appl. 8 (1), 61–80, January 2018.
  • [11] A. Karimi Feizabadi, A.A. Estaji and M. Zarghani, The ring of real-valued functions on a frame, Categ. Gen. Algebr. Struct. Appl. 5 (1), 85–102, July 2016.
  • [12] J. Picado and A. Pultr, Frames and locales: Topology without points, Frontiers in Mathematics, Springer Basel, 2012.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ali Akbar Estaji This is me 0000-0002-0376-5477

Ahmad Mahmoudi Darghadam This is me 0000-0001-9416-6041

Publication Date April 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 2

Cite

APA Estaji, A. A., & Darghadam, A. M. (2020). Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacettepe Journal of Mathematics and Statistics, 49(2), 854-868. https://doi.org/10.15672/hujms.624015
AMA Estaji AA, Darghadam AM. Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacettepe Journal of Mathematics and Statistics. April 2020;49(2):854-868. doi:10.15672/hujms.624015
Chicago Estaji, Ali Akbar, and Ahmad Mahmoudi Darghadam. “Rings of Frame Maps from $\mathcal{P}(\mathbb{R})$ to Frames Which Vanish at Infinity”. Hacettepe Journal of Mathematics and Statistics 49, no. 2 (April 2020): 854-68. https://doi.org/10.15672/hujms.624015.
EndNote Estaji AA, Darghadam AM (April 1, 2020) Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacettepe Journal of Mathematics and Statistics 49 2 854–868.
IEEE A. A. Estaji and A. M. Darghadam, “Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, pp. 854–868, 2020, doi: 10.15672/hujms.624015.
ISNAD Estaji, Ali Akbar - Darghadam, Ahmad Mahmoudi. “Rings of Frame Maps from $\mathcal{P}(\mathbb{R})$ to Frames Which Vanish at Infinity”. Hacettepe Journal of Mathematics and Statistics 49/2 (April 2020), 854-868. https://doi.org/10.15672/hujms.624015.
JAMA Estaji AA, Darghadam AM. Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacettepe Journal of Mathematics and Statistics. 2020;49:854–868.
MLA Estaji, Ali Akbar and Ahmad Mahmoudi Darghadam. “Rings of Frame Maps from $\mathcal{P}(\mathbb{R})$ to Frames Which Vanish at Infinity”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 2, 2020, pp. 854-68, doi:10.15672/hujms.624015.
Vancouver Estaji AA, Darghadam AM. Rings of frame maps from $\mathcal{P}(\mathbb{R})$ to frames which vanish at infinity. Hacettepe Journal of Mathematics and Statistics. 2020;49(2):854-68.