Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 3, 1076 - 1083, 02.06.2020
https://doi.org/10.15672/hujms.531654

Abstract

References

  • [1] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57, 31-37, 2000.
  • [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1), 511, 1993.
  • [3] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math. 17 (1), 134-160, 2003.
  • [4] V.S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr. 26, 115-118, 1963/1964.
  • [5] M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015, 14 pages, 2015.
  • [6] M. Jleli and B. Samet, On a new generalization of metric spaces, Fixed Point Theory Appl. 20 (3), 20 pages, 2018.
  • [7] R. Kopperman and H. Pajoohesh, Generalizations of metrics and partial metrics, Hacet. J. Math. Stat. 46 (1), 9-14, 2017.
  • [8] S. Koshi and T. Shimogaki, On F–norms of quasi–modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. I. 15 (3), 202-218, 1961.
  • [9] M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces (in Russian), Fizmatgiz, Moskva, 1958; Translated by L.F. Boron, Noordhoff, Groningen, 1961.
  • [10] W.A. Luxemburg, Banach function spaces, Ph. D. Thesis, Delft University of Technology, Delft, The Netherlands, 1959.
  • [11] L. Maligranda, Orlicz Spaces and Interpolation, in: Seminars in Math. 5, Univ. of Campinas, Brazil, 1989.
  • [12] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728, 183-197, 1994.
  • [13] J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
  • [14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2), 289-297, 2006.
  • [15] H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser. 1, Maruzen Co., Tokyo, 1950.
  • [16] W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988.
  • [17] T.L. Shateri, C∗-algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory Appl. 19 (2), 1551-1560, 2017.
  • [18] S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. 90, 291-311, 1959.

New generalizations of Modular spaces

Year 2020, Volume: 49 Issue: 3, 1076 - 1083, 02.06.2020
https://doi.org/10.15672/hujms.531654

Abstract

In the present paper, we introduce the concept of $\mathcal{F}$-modular, which is a generalization of the modular notion. Moreover, we introduce a $K_p$-modular and $K$-modular, and then compare these concepts together. Finally, we give a characterization of $\mathcal{F}$-modulars.

References

  • [1] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen 57, 31-37, 2000.
  • [2] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1), 511, 1993.
  • [3] R. Fagin, R. Kumar and D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math. 17 (1), 134-160, 2003.
  • [4] V.S. G¨ahler, 2-metrische R¨aume und ihre topologische struktur, Math. Nachr. 26, 115-118, 1963/1964.
  • [5] M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015, 14 pages, 2015.
  • [6] M. Jleli and B. Samet, On a new generalization of metric spaces, Fixed Point Theory Appl. 20 (3), 20 pages, 2018.
  • [7] R. Kopperman and H. Pajoohesh, Generalizations of metrics and partial metrics, Hacet. J. Math. Stat. 46 (1), 9-14, 2017.
  • [8] S. Koshi and T. Shimogaki, On F–norms of quasi–modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. I. 15 (3), 202-218, 1961.
  • [9] M.A. Krasnoselskii and Y.B. Rutickii, Convex functions and Orlicz spaces (in Russian), Fizmatgiz, Moskva, 1958; Translated by L.F. Boron, Noordhoff, Groningen, 1961.
  • [10] W.A. Luxemburg, Banach function spaces, Ph. D. Thesis, Delft University of Technology, Delft, The Netherlands, 1959.
  • [11] L. Maligranda, Orlicz Spaces and Interpolation, in: Seminars in Math. 5, Univ. of Campinas, Brazil, 1989.
  • [12] S.G. Matthews, Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728, 183-197, 1994.
  • [13] J. Musielak, Orlicz Spaces and Modular Spaces, in: Lecture Notes in Math. 1034, Springer-Verlag, Berlin, 1983.
  • [14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2), 289-297, 2006.
  • [15] H. Nakano, Modulared Semi-Ordered Linear Spaces, in: Tokyo Math. Book Ser. 1, Maruzen Co., Tokyo, 1950.
  • [16] W. Orlicz, Collected Papers, Vols. I, II, PWN, Warszawa, 1988.
  • [17] T.L. Shateri, C∗-algebra-valued modular spaces and fixed point theorems, J. Fixed Point Theory Appl. 19 (2), 1551-1560, 2017.
  • [18] S. Yamamuro, On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc. 90, 291-311, 1959.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Tayebe Lal Shateri 0000-0002-5181-6558

Publication Date June 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 3

Cite

APA Lal Shateri, T. (2020). New generalizations of Modular spaces. Hacettepe Journal of Mathematics and Statistics, 49(3), 1076-1083. https://doi.org/10.15672/hujms.531654
AMA Lal Shateri T. New generalizations of Modular spaces. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1076-1083. doi:10.15672/hujms.531654
Chicago Lal Shateri, Tayebe. “New Generalizations of Modular Spaces”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1076-83. https://doi.org/10.15672/hujms.531654.
EndNote Lal Shateri T (June 1, 2020) New generalizations of Modular spaces. Hacettepe Journal of Mathematics and Statistics 49 3 1076–1083.
IEEE T. Lal Shateri, “New generalizations of Modular spaces”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1076–1083, 2020, doi: 10.15672/hujms.531654.
ISNAD Lal Shateri, Tayebe. “New Generalizations of Modular Spaces”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1076-1083. https://doi.org/10.15672/hujms.531654.
JAMA Lal Shateri T. New generalizations of Modular spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49:1076–1083.
MLA Lal Shateri, Tayebe. “New Generalizations of Modular Spaces”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1076-83, doi:10.15672/hujms.531654.
Vancouver Lal Shateri T. New generalizations of Modular spaces. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1076-83.