Research Article
BibTex RIS Cite

On $K$-pseudoframes for subspaces

Year 2020, Volume: 49 Issue: 3, 1057 - 1066, 02.06.2020
https://doi.org/10.15672/hujms.647209

Abstract

In this paper, the concept of $K$-pseudoframes for subspaces of Hilbert spaces, as a generalization of both $K$-frames and pseudoframes, is introduced and some of their properties and their characterizations are investigated. Next, duals of $K$-pseudoframes are discussed. Finally, the concept of pseudoatomic system is introduced and its relations with $K$-pseudoframe are studied.

References

  • [1] F. Arabyani Neyshaburi and A.A. Arefijamaal, Some constructions of K-frames and their duals, Rocky Mountain J. Math. 47 (6), 1749–1764, 2017.
  • [2] P.G. Casazza and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, College Park, MD, Contempt. Math. 345, American Mathematical Society, Providence, 87–113, 2004.
  • [3] P.G. Casazza and S. Li, Fusion frames and distributed processing, App. Comput. Harmon. Anal. 25, 114–132, 2008.
  • [4] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27, 1271–1283, 1986.
  • [5] R.G. Douglas On majoration, factorization and range inclusion for operators on Hilbert spaces, Proc. Amer. Math. Soc. 17 (2), 413–415, 1966.
  • [6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math. Soc. 72, 341–366, 1952.
  • [7] L. Găvruţa, Frames for operators, Appi. Comput. Harmon. Anal. 32, 139–144, 2012.
  • [8] L. Găvruţa, New results on operators, Anal. Univ. Oradea, Fasc. Mat. 19, 55–61, 2012.
  • [9] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces, Math. Reports. 17 (67-3), 303–314, 2015.
  • [10] S. Li, A theory of generalized multiresolution structure and pseudoframes of translation, J. Fourier Anal. Appl. 7 (1), 23–40, 2001.
  • [11] S. Li and H. Ogawa, A theory of pseudoframes for subspaces with applications, Tokyo Institute of Technology, Technical Report, 1998.
  • [12] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437–452, 2006.
  • [13] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, Results Math. 63, 1243–1255, 2013.
Year 2020, Volume: 49 Issue: 3, 1057 - 1066, 02.06.2020
https://doi.org/10.15672/hujms.647209

Abstract

References

  • [1] F. Arabyani Neyshaburi and A.A. Arefijamaal, Some constructions of K-frames and their duals, Rocky Mountain J. Math. 47 (6), 1749–1764, 2017.
  • [2] P.G. Casazza and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator theory, College Park, MD, Contempt. Math. 345, American Mathematical Society, Providence, 87–113, 2004.
  • [3] P.G. Casazza and S. Li, Fusion frames and distributed processing, App. Comput. Harmon. Anal. 25, 114–132, 2008.
  • [4] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27, 1271–1283, 1986.
  • [5] R.G. Douglas On majoration, factorization and range inclusion for operators on Hilbert spaces, Proc. Amer. Math. Soc. 17 (2), 413–415, 1966.
  • [6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math. Soc. 72, 341–366, 1952.
  • [7] L. Găvruţa, Frames for operators, Appi. Comput. Harmon. Anal. 32, 139–144, 2012.
  • [8] L. Găvruţa, New results on operators, Anal. Univ. Oradea, Fasc. Mat. 19, 55–61, 2012.
  • [9] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces, Math. Reports. 17 (67-3), 303–314, 2015.
  • [10] S. Li, A theory of generalized multiresolution structure and pseudoframes of translation, J. Fourier Anal. Appl. 7 (1), 23–40, 2001.
  • [11] S. Li and H. Ogawa, A theory of pseudoframes for subspaces with applications, Tokyo Institute of Technology, Technical Report, 1998.
  • [12] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437–452, 2006.
  • [13] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces, Results Math. 63, 1243–1255, 2013.
There are 13 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Hamide Azarmi This is me 0000-0003-3146-8928

Mohammad Janfada 0000-0002-3016-4028

Rajab Ali Kamyabi-go This is me 0000-0003-0137-3653

Publication Date June 2, 2020
Published in Issue Year 2020 Volume: 49 Issue: 3

Cite

APA Azarmi, H., Janfada, M., & Kamyabi-go, R. A. (2020). On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics, 49(3), 1057-1066. https://doi.org/10.15672/hujms.647209
AMA Azarmi H, Janfada M, Kamyabi-go RA. On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1057-1066. doi:10.15672/hujms.647209
Chicago Azarmi, Hamide, Mohammad Janfada, and Rajab Ali Kamyabi-go. “On $K$-Pseudoframes for Subspaces”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1057-66. https://doi.org/10.15672/hujms.647209.
EndNote Azarmi H, Janfada M, Kamyabi-go RA (June 1, 2020) On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics 49 3 1057–1066.
IEEE H. Azarmi, M. Janfada, and R. A. Kamyabi-go, “On $K$-pseudoframes for subspaces”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1057–1066, 2020, doi: 10.15672/hujms.647209.
ISNAD Azarmi, Hamide et al. “On $K$-Pseudoframes for Subspaces”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1057-1066. https://doi.org/10.15672/hujms.647209.
JAMA Azarmi H, Janfada M, Kamyabi-go RA. On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics. 2020;49:1057–1066.
MLA Azarmi, Hamide et al. “On $K$-Pseudoframes for Subspaces”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1057-66, doi:10.15672/hujms.647209.
Vancouver Azarmi H, Janfada M, Kamyabi-go RA. On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1057-66.