In this paper, the concept of $K$-pseudoframes for subspaces of Hilbert spaces, as a generalization of both $K$-frames and pseudoframes, is introduced and some of their properties and their characterizations are investigated. Next, duals of $K$-pseudoframes are discussed. Finally, the concept of pseudoatomic system is introduced and its relations with $K$-pseudoframe are studied.
[1] F. Arabyani Neyshaburi and A.A. Arefijamaal, Some constructions of K-frames and
their duals, Rocky Mountain J. Math. 47 (6), 1749–1764, 2017.
[2] P.G. Casazza and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator
theory, College Park, MD, Contempt. Math. 345, American Mathematical Society,
Providence, 87–113, 2004.
[3] P.G. Casazza and S. Li, Fusion frames and distributed processing, App. Comput.
Harmon. Anal. 25, 114–132, 2008.
[4] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J.
Math. Phys. 27, 1271–1283, 1986.
[5] R.G. Douglas On majoration, factorization and range inclusion for operators on
Hilbert spaces, Proc. Amer. Math. Soc. 17 (2), 413–415, 1966.
[6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math.
Soc. 72, 341–366, 1952.
[7] L. Găvruţa, Frames for operators, Appi. Comput. Harmon. Anal. 32, 139–144, 2012.
[8] L. Găvruţa, New results on operators, Anal. Univ. Oradea, Fasc. Mat. 19, 55–61,
2012.
[9] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces,
Math. Reports. 17 (67-3), 303–314, 2015.
[10] S. Li, A theory of generalized multiresolution structure and pseudoframes of translation,
J. Fourier Anal. Appl. 7 (1), 23–40, 2001.
[11] S. Li and H. Ogawa, A theory of pseudoframes for subspaces with applications, Tokyo
Institute of Technology, Technical Report, 1998.
[12] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437–452, 2006.
[13] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces,
Results Math. 63, 1243–1255, 2013.
Year 2020,
Volume: 49 Issue: 3, 1057 - 1066, 02.06.2020
[1] F. Arabyani Neyshaburi and A.A. Arefijamaal, Some constructions of K-frames and
their duals, Rocky Mountain J. Math. 47 (6), 1749–1764, 2017.
[2] P.G. Casazza and G. Kutyniok, Frames of subspaces. Wavelets, frames and operator
theory, College Park, MD, Contempt. Math. 345, American Mathematical Society,
Providence, 87–113, 2004.
[3] P.G. Casazza and S. Li, Fusion frames and distributed processing, App. Comput.
Harmon. Anal. 25, 114–132, 2008.
[4] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J.
Math. Phys. 27, 1271–1283, 1986.
[5] R.G. Douglas On majoration, factorization and range inclusion for operators on
Hilbert spaces, Proc. Amer. Math. Soc. 17 (2), 413–415, 1966.
[6] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Math.
Soc. 72, 341–366, 1952.
[7] L. Găvruţa, Frames for operators, Appi. Comput. Harmon. Anal. 32, 139–144, 2012.
[8] L. Găvruţa, New results on operators, Anal. Univ. Oradea, Fasc. Mat. 19, 55–61,
2012.
[9] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces,
Math. Reports. 17 (67-3), 303–314, 2015.
[10] S. Li, A theory of generalized multiresolution structure and pseudoframes of translation,
J. Fourier Anal. Appl. 7 (1), 23–40, 2001.
[11] S. Li and H. Ogawa, A theory of pseudoframes for subspaces with applications, Tokyo
Institute of Technology, Technical Report, 1998.
[12] W.C. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322, 437–452, 2006.
[13] X. Xiao, Y. Zhu and L. Găvruţa, Some properties of K-frames in Hilbert spaces,
Results Math. 63, 1243–1255, 2013.
Azarmi, H., Janfada, M., & Kamyabi-go, R. A. (2020). On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics, 49(3), 1057-1066. https://doi.org/10.15672/hujms.647209
AMA
Azarmi H, Janfada M, Kamyabi-go RA. On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics. June 2020;49(3):1057-1066. doi:10.15672/hujms.647209
Chicago
Azarmi, Hamide, Mohammad Janfada, and Rajab Ali Kamyabi-go. “On $K$-Pseudoframes for Subspaces”. Hacettepe Journal of Mathematics and Statistics 49, no. 3 (June 2020): 1057-66. https://doi.org/10.15672/hujms.647209.
EndNote
Azarmi H, Janfada M, Kamyabi-go RA (June 1, 2020) On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics 49 3 1057–1066.
IEEE
H. Azarmi, M. Janfada, and R. A. Kamyabi-go, “On $K$-pseudoframes for subspaces”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, pp. 1057–1066, 2020, doi: 10.15672/hujms.647209.
ISNAD
Azarmi, Hamide et al. “On $K$-Pseudoframes for Subspaces”. Hacettepe Journal of Mathematics and Statistics 49/3 (June 2020), 1057-1066. https://doi.org/10.15672/hujms.647209.
JAMA
Azarmi H, Janfada M, Kamyabi-go RA. On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics. 2020;49:1057–1066.
MLA
Azarmi, Hamide et al. “On $K$-Pseudoframes for Subspaces”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 3, 2020, pp. 1057-66, doi:10.15672/hujms.647209.
Vancouver
Azarmi H, Janfada M, Kamyabi-go RA. On $K$-pseudoframes for subspaces. Hacettepe Journal of Mathematics and Statistics. 2020;49(3):1057-66.