Research Article
BibTex RIS Cite
Year 2020, Volume: 49 Issue: 4, 1346 - 1354, 06.08.2020
https://doi.org/10.15672/hujms.549313

Abstract

References

  • [1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, The Fekete-Szegö coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35, 119–142, 2009.
  • [2] P.N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62, 37–43, 1977.
  • [3] D.J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52, 191–195, 1975.
  • [4] R. Kargar, A. Ebadian, J. Sokół, On subordination of some analytic functions, Sib. Math. J. 57, 599–605, 2016.
  • [5] R. Kargar, A. Ebadian and J. Sokół, Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory 11, 1639–1649, 2017.
  • [6] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9, 143–154, 2019.
  • [7] F.R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [8] K. Kuroki and S. Owa, Notes on New Class for Certain Analytic Functions, RIMS Kokyuroku Kyoto Univ. 1772, 21–25, 2011.
  • [9] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109–115, 1975.
  • [10] St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48, 119–135, 1973.
  • [11] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48, 48–82, 1943.
  • [12] H. Silverman, A class of bounded starlike functions, Internat. J. Math. Math. Sci. 17, 249–252, 1994.
  • [13] H. Silverman and E.M. Silvia, Characterizations for subclasses of univalent functions, Math. Japan. 50, 103–109, 1999.
  • [14] R. Singh and S. Singh, Convolutions properties of a class of starlike functions, Proc. Amer. Math. Soc. 106, 145–152, 1989.

A new subclass of analytic functions

Year 2020, Volume: 49 Issue: 4, 1346 - 1354, 06.08.2020
https://doi.org/10.15672/hujms.549313

Abstract

In the present paper, we introduce a class $\mathcal{B}_\theta(\alpha,\beta)$ of functions, analytic in $|z|<1$, such that $f(0)=0$, $f'(0)=1$ and
\[\alpha< Re\left(f'(z)+\frac{1+e^{i\theta}}{2}zf''(z)\right)<\beta\quad (|z|<1),\]
where $\theta\in(-\pi,\pi]$, $0\leq\alpha<1$ and $\beta>1$. Integral representation, differential subordination results and coefficient estimates are considered. Also Fekete-Szegö coefficient functional associated with the $k$--th root transform $[f(z^k)]^{1/k}$ for functions in the class $\mathcal{B}_\theta(\alpha,\beta)$ is investigated.

References

  • [1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramanian, The Fekete-Szegö coefficient functional for transforms of analytic functions, Bull. Iranian Math. Soc. 35, 119–142, 2009.
  • [2] P.N. Chichra, New subclasses of the class of close-to-convex functions, Proc. Amer. Math. Soc. 62, 37–43, 1977.
  • [3] D.J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc. 52, 191–195, 1975.
  • [4] R. Kargar, A. Ebadian, J. Sokół, On subordination of some analytic functions, Sib. Math. J. 57, 599–605, 2016.
  • [5] R. Kargar, A. Ebadian and J. Sokół, Radius problems for some subclasses of analytic functions, Complex Anal. Oper. Theory 11, 1639–1649, 2017.
  • [6] R. Kargar, A. Ebadian and J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys. 9, 143–154, 2019.
  • [7] F.R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8–12, 1969.
  • [8] K. Kuroki and S. Owa, Notes on New Class for Certain Analytic Functions, RIMS Kokyuroku Kyoto Univ. 1772, 21–25, 2011.
  • [9] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49, 109–115, 1975.
  • [10] St. Ruscheweyh and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48, 119–135, 1973.
  • [11] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48, 48–82, 1943.
  • [12] H. Silverman, A class of bounded starlike functions, Internat. J. Math. Math. Sci. 17, 249–252, 1994.
  • [13] H. Silverman and E.M. Silvia, Characterizations for subclasses of univalent functions, Math. Japan. 50, 103–109, 1999.
  • [14] R. Singh and S. Singh, Convolutions properties of a class of starlike functions, Proc. Amer. Math. Soc. 106, 145–152, 1989.
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Hesam Mahzon This is me 0000-0002-3167-4134

Janusz Sokol 0000-0003-1204-2286

Publication Date August 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 4

Cite

APA Mahzon, H., & Sokol, J. (2020). A new subclass of analytic functions. Hacettepe Journal of Mathematics and Statistics, 49(4), 1346-1354. https://doi.org/10.15672/hujms.549313
AMA Mahzon H, Sokol J. A new subclass of analytic functions. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1346-1354. doi:10.15672/hujms.549313
Chicago Mahzon, Hesam, and Janusz Sokol. “A New Subclass of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1346-54. https://doi.org/10.15672/hujms.549313.
EndNote Mahzon H, Sokol J (August 1, 2020) A new subclass of analytic functions. Hacettepe Journal of Mathematics and Statistics 49 4 1346–1354.
IEEE H. Mahzon and J. Sokol, “A new subclass of analytic functions”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1346–1354, 2020, doi: 10.15672/hujms.549313.
ISNAD Mahzon, Hesam - Sokol, Janusz. “A New Subclass of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1346-1354. https://doi.org/10.15672/hujms.549313.
JAMA Mahzon H, Sokol J. A new subclass of analytic functions. Hacettepe Journal of Mathematics and Statistics. 2020;49:1346–1354.
MLA Mahzon, Hesam and Janusz Sokol. “A New Subclass of Analytic Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1346-54, doi:10.15672/hujms.549313.
Vancouver Mahzon H, Sokol J. A new subclass of analytic functions. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1346-54.