Research Article
BibTex RIS Cite

Structure of weighted Hardy spaces on finitely connected domains

Year 2020, Volume: 49 Issue: 4, 1450 - 1457, 06.08.2020
https://doi.org/10.15672/hujms.598004

Abstract

We give a complete characterization of a certain class of Hardy type spaces on finitely connected planar domains. In particular, we provide a decomposition result and give a description of such functions through their boundary values. As an application, we describe an isomorphism from the weighted Hardy space onto the classical Hardy-Smirnov space. This allows us to identify the multiplier space of the mentioned Hardy type spaces as the space of bounded holomorphic functions on the domain.

******************************************************************************************

Supporting Institution

TUBITAK

Project Number

118F405

References

  • [1] M.A. Alan, Hardy spaces on hyperconvex domains, M.Sc. Thesis, Middle East Technical University, Ankara, 2003.
  • [2] M.A. Alan and N.G. Göğüş, Poletsky-Stessin-Hardy spaces in the plane, Complex Anal. Oper. Theory, 8 (5), 975–990, 2014.
  • [3] B. Chevreau, C.M. Pearcy and A.L. Shields, Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces, J. Operator Theory, 6, 375–405, 1981.
  • [4] J.P. Demailly, Mesure de Monge Ampère et mesures plurisousharmonique, Math. Z. 194, 519–564, 1987.
  • [5] P.L. Duren, Theory of $H^p$ spaces, Pure and Applied Mathematics 38, Academic Press, New York-London, 1970.
  • [6] N. G. Göğüş, Structure of weighted Hardy spaces in the plane, Filomat, 30 (2), 473–482, 2016.
  • [7] S. Krantz, Geometric function theory. Explorations in complex analysis, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2006.
  • [8] E.A. Poletsky and K. Shrestha, On weighted Hardy spaces on the unit disk, Constructive approximation of functions, 195–204, Banach Center Publ. 107, Polish Acad. Sci. Inst. Math., Warsaw, 2015.
  • [9] E.A. Poletsky and M.I. Stessin, Hardy and Bergman spaces on hyperconvex domains and their composition operators, Indiana Univ. Math. J. 57 (5), 2153–2201, 2008.
  • [10] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley and Sons, Inc., New York, 1994.
  • [11] K.R. Shrestha, Weighted Hardy spaces on the unit disk, Complex Anal. Oper. Theory, 9 (6), 1377–1389, 2015.
  • [12] S. Şahin, Poletsky-Stessin Hardy spaces on domains bounded by an analytic Jordan curve in C, Complex Var. Elliptic Equ. 60 (8), 1114–1132, 2015.
Year 2020, Volume: 49 Issue: 4, 1450 - 1457, 06.08.2020
https://doi.org/10.15672/hujms.598004

Abstract

Project Number

118F405

References

  • [1] M.A. Alan, Hardy spaces on hyperconvex domains, M.Sc. Thesis, Middle East Technical University, Ankara, 2003.
  • [2] M.A. Alan and N.G. Göğüş, Poletsky-Stessin-Hardy spaces in the plane, Complex Anal. Oper. Theory, 8 (5), 975–990, 2014.
  • [3] B. Chevreau, C.M. Pearcy and A.L. Shields, Finitely connected domains $G$, representations of $H^{\infty}(G)$, and invariant subspaces, J. Operator Theory, 6, 375–405, 1981.
  • [4] J.P. Demailly, Mesure de Monge Ampère et mesures plurisousharmonique, Math. Z. 194, 519–564, 1987.
  • [5] P.L. Duren, Theory of $H^p$ spaces, Pure and Applied Mathematics 38, Academic Press, New York-London, 1970.
  • [6] N. G. Göğüş, Structure of weighted Hardy spaces in the plane, Filomat, 30 (2), 473–482, 2016.
  • [7] S. Krantz, Geometric function theory. Explorations in complex analysis, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2006.
  • [8] E.A. Poletsky and K. Shrestha, On weighted Hardy spaces on the unit disk, Constructive approximation of functions, 195–204, Banach Center Publ. 107, Polish Acad. Sci. Inst. Math., Warsaw, 2015.
  • [9] E.A. Poletsky and M.I. Stessin, Hardy and Bergman spaces on hyperconvex domains and their composition operators, Indiana Univ. Math. J. 57 (5), 2153–2201, 2008.
  • [10] D. Sarason, Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes in the Mathematical Sciences, 10, John Wiley and Sons, Inc., New York, 1994.
  • [11] K.R. Shrestha, Weighted Hardy spaces on the unit disk, Complex Anal. Oper. Theory, 9 (6), 1377–1389, 2015.
  • [12] S. Şahin, Poletsky-Stessin Hardy spaces on domains bounded by an analytic Jordan curve in C, Complex Var. Elliptic Equ. 60 (8), 1114–1132, 2015.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Nihat Gökhan Göğüş 0000-0003-1966-8409

Project Number 118F405
Publication Date August 6, 2020
Published in Issue Year 2020 Volume: 49 Issue: 4

Cite

APA Göğüş, N. G. (2020). Structure of weighted Hardy spaces on finitely connected domains. Hacettepe Journal of Mathematics and Statistics, 49(4), 1450-1457. https://doi.org/10.15672/hujms.598004
AMA Göğüş NG. Structure of weighted Hardy spaces on finitely connected domains. Hacettepe Journal of Mathematics and Statistics. August 2020;49(4):1450-1457. doi:10.15672/hujms.598004
Chicago Göğüş, Nihat Gökhan. “Structure of Weighted Hardy Spaces on Finitely Connected Domains”. Hacettepe Journal of Mathematics and Statistics 49, no. 4 (August 2020): 1450-57. https://doi.org/10.15672/hujms.598004.
EndNote Göğüş NG (August 1, 2020) Structure of weighted Hardy spaces on finitely connected domains. Hacettepe Journal of Mathematics and Statistics 49 4 1450–1457.
IEEE N. G. Göğüş, “Structure of weighted Hardy spaces on finitely connected domains”, Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, pp. 1450–1457, 2020, doi: 10.15672/hujms.598004.
ISNAD Göğüş, Nihat Gökhan. “Structure of Weighted Hardy Spaces on Finitely Connected Domains”. Hacettepe Journal of Mathematics and Statistics 49/4 (August 2020), 1450-1457. https://doi.org/10.15672/hujms.598004.
JAMA Göğüş NG. Structure of weighted Hardy spaces on finitely connected domains. Hacettepe Journal of Mathematics and Statistics. 2020;49:1450–1457.
MLA Göğüş, Nihat Gökhan. “Structure of Weighted Hardy Spaces on Finitely Connected Domains”. Hacettepe Journal of Mathematics and Statistics, vol. 49, no. 4, 2020, pp. 1450-7, doi:10.15672/hujms.598004.
Vancouver Göğüş NG. Structure of weighted Hardy spaces on finitely connected domains. Hacettepe Journal of Mathematics and Statistics. 2020;49(4):1450-7.