Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 235 - 242, 04.02.2021
https://doi.org/10.15672/hujms.554500

Abstract

References

  • [1] P. Alegre, K. Arslan, A. Carriazo, C. Murathan and G. Ozturk, Some special types of developable ruled surface, Hacet. J. Math. Stat. 39 (3), 319–325, 2010.
  • [2] B. Altunkaya and L. Kula, On spacelike rectifying slant helices in Minkowski 3-space, Turkish J. Math. 42, 1098–1110, 2018.
  • [3] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (5), 1503–1509, 1997.
  • [4] B.Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147–152, 2003.
  • [5] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2), 153–163, 2004.
  • [6] K. Ilarslan, E. Nesovic and M.P. Torgasev, Some characterization of rectifying curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2), 23–32, 2003.
  • [7] P. Lucas and J.A.O. Yagues, Rectifying curves in the three dimensional hyperbolic space, Mediterr. J. Math. 13, 2199–2214, 2016.
  • [8] P. Lucas and J.A.O. Yagues, Slant helices in the three dimensional sphere, J. Korean Math. Soc. 54 (4), 1331–1343, 2017.

Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$

Year 2021, Volume: 50 Issue: 1, 235 - 242, 04.02.2021
https://doi.org/10.15672/hujms.554500

Abstract

In this paper, we study the geometry of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$. Further we obtain the distance function in terms of arc length when the rectifying curve lying in the upper half plane. Then we find the distance function and also give the general equations of the curvature and torsion of rectifying general helices in $\mathbb{H}^3(-r)$.

References

  • [1] P. Alegre, K. Arslan, A. Carriazo, C. Murathan and G. Ozturk, Some special types of developable ruled surface, Hacet. J. Math. Stat. 39 (3), 319–325, 2010.
  • [2] B. Altunkaya and L. Kula, On spacelike rectifying slant helices in Minkowski 3-space, Turkish J. Math. 42, 1098–1110, 2018.
  • [3] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (5), 1503–1509, 1997.
  • [4] B.Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110, 147–152, 2003.
  • [5] S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turkish J. Math. 28 (2), 153–163, 2004.
  • [6] K. Ilarslan, E. Nesovic and M.P. Torgasev, Some characterization of rectifying curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2), 23–32, 2003.
  • [7] P. Lucas and J.A.O. Yagues, Rectifying curves in the three dimensional hyperbolic space, Mediterr. J. Math. 13, 2199–2214, 2016.
  • [8] P. Lucas and J.A.O. Yagues, Slant helices in the three dimensional sphere, J. Korean Math. Soc. 54 (4), 1331–1343, 2017.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Buddhadev Pal 0000-0002-1407-1016

Akhılesh Yadav 0000-0003-3990-857X

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Pal, B., & Yadav, A. (2021). Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$. Hacettepe Journal of Mathematics and Statistics, 50(1), 235-242. https://doi.org/10.15672/hujms.554500
AMA Pal B, Yadav A. Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):235-242. doi:10.15672/hujms.554500
Chicago Pal, Buddhadev, and Akhılesh Yadav. “Some Characterizations of Rectifying Curves in the 3-Dimensional Hyperbolic Space $\mathbb H^{3}(-r)$”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 235-42. https://doi.org/10.15672/hujms.554500.
EndNote Pal B, Yadav A (February 1, 2021) Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$. Hacettepe Journal of Mathematics and Statistics 50 1 235–242.
IEEE B. Pal and A. Yadav, “Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 235–242, 2021, doi: 10.15672/hujms.554500.
ISNAD Pal, Buddhadev - Yadav, Akhılesh. “Some Characterizations of Rectifying Curves in the 3-Dimensional Hyperbolic Space $\mathbb H^{3}(-r)$”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 235-242. https://doi.org/10.15672/hujms.554500.
JAMA Pal B, Yadav A. Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$. Hacettepe Journal of Mathematics and Statistics. 2021;50:235–242.
MLA Pal, Buddhadev and Akhılesh Yadav. “Some Characterizations of Rectifying Curves in the 3-Dimensional Hyperbolic Space $\mathbb H^{3}(-r)$”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 235-42, doi:10.15672/hujms.554500.
Vancouver Pal B, Yadav A. Some characterizations of rectifying curves in the 3-dimensional hyperbolic space $\mathbb H^{3}(-r)$. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):235-42.