Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 1, 92 - 109, 04.02.2021
https://doi.org/10.15672/hujms.638033

Abstract

References

  • [1] C. Bir, D.M. Howard, M.T. Keller, W.T. Trotter and S.J. Young, Interval partitions and Stanley depth, J. Combin. Theory Ser. A, 117, 475–482, 2010.
  • [2] M. Cimpoeaş, Several inequalities regarding Stanley depth, Romanian Journal of Math. and Computer Science, 2, 28–40, 2012.
  • [3] M. Cimpoeaş, Stanley depth of squarefree Veronese ideals, An. St. Univ. Ovidius Constanta, 21 (3), 67–71, 2013.
  • [4] M. Cimpoeaş, On the Stanley depth of edge ideals of line and cyclic graphs, Romanian Journal of Math. and Computer Science, 5 (1), 70–75, 2015.
  • [5] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, available at http://cocoa.dima.unige.it.
  • [6] A.M. Duval, B. Goeckner, C.J. Klivans and J.L. Martine, A non-partitionable Cohen- Macaulay simplicial complex, Adv. Math. 299, 381–395, 2016.
  • [7] S.A.S. Fakhari, On the Stanley Depth of Powers of Monomial Ideals, Mathematics, 7, 607, 2019.
  • [8] L. Fouli and S. Morey, A lower bound for depths of powers of edge ideals, J. Algebraic Combin. 42 (3), 829–848, 2015.
  • [9] R. Hammack, W. Imrich and S. Klavar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.
  • [10] J. Herzog, A survey on Stanley depth, In Monomial ideals, computations and applications, Lecture Notes in Math. 2083, Springer, Heidelberg, 3–45, 2013.
  • [11] J. Herzog, M. Vladoiu and X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (9), 3151–3169, 2009.
  • [12] Z. Iqbal and M. Ishaq, Depth and Stanley depth of edge ideals associated to some line graphs, AIMS Mathematics, 4 (3), 686–698, 2019.
  • [13] Z. Iqbal and M. Ishaq, Depth and Stanley depth of edge ideals of powers of paths and cycles, An. Şt. Univ. Ovidius Constana, 27 (3), 113–135, 2019.
  • [14] Z. Iqbal, M. Ishaq and M. Aamir, Depth and Stanley depth of edge ideals of square paths and square cycles, Comm. Algebra, 46 (3), 1188–1198, 2018.
  • [15] M. Ishaq, Upper bounds for the Stanley depth, Comm. Algebra, 40 (1), 87–97, 2012.
  • [16] M. Ishaq, Values and bounds for the Stanley depth, Carpathian J. Math. 27 (2), 217–224, 2011.
  • [17] M. Ishaq and M.I. Qureshi, Upper and lower bounds for the Stanley depth of certain classes of monomial ideals and their residue class rings, Comm. Algebra, 41 (3), 1107–1116, 2013.
  • [18] M.T. Keller and S.J. Young, Combinatorial reductions for the Stanley depth of I and S/I, Electron. J. Comb. 24 (3), #P3.48, 2017.
  • [19] M.T. Keller, Y. Shen, N. Streib and S.J. Young, On the Stanley depth of squarefree veronese ideals, J. Algebraic Combin. 33 (2), 313–324, 2011.
  • [20] S. Morey, Depths of powers of the edge ideal of a tree, Comm. Algebra, 38 (11), 4042–4055, 2010.
  • [21] R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebra, 3 (1), 83–88, 2011.
  • [22] M.R. Pournaki, S.A.S. Fakhari and S. Yassemi, Stanley depth of powers of the edge ideals of a forest, Proc. Amer. Math. Soc. 141 (10), 3327–3336, 2013.
  • [23] M.R. Pournaki, S.A.S. Fakhari, M. Tousi and S. Yassemi, What is . . . Stanley depth? Not. Am. Math. Soc. 56, 1106–1108, 2009.
  • [24] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2), 773–784, 2010.
  • [25] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Le Matematiche, LXIII(ii), 243–256, 2008.
  • [26] R.P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (2), 175–193, 1982.
  • [27] A. Stefan, Stanley depth of powers of path ideal, http://arxiv.org/pdf/1409.6072.pdf.
  • [28] R.H. Villarreal, Monomial Algebras in:Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 238, 2011.

Depth and Stanley depth of the edge ideals of the strong product of some graphs

Year 2021, Volume: 50 Issue: 1, 92 - 109, 04.02.2021
https://doi.org/10.15672/hujms.638033

Abstract

In this paper, we study depth and Stanley depth of the edge ideals and quotient rings of the edge ideals, associated with classes of graphs obtained by the strong product of two graphs. We consider the cases when either both graphs are arbitrary paths or one is an arbitrary path and the other is an arbitrary cycle. We give exact formula for values of depth and Stanley depth for some subclasses. We also give some sharp upper bounds for depth and Stanley depth in the general cases.

References

  • [1] C. Bir, D.M. Howard, M.T. Keller, W.T. Trotter and S.J. Young, Interval partitions and Stanley depth, J. Combin. Theory Ser. A, 117, 475–482, 2010.
  • [2] M. Cimpoeaş, Several inequalities regarding Stanley depth, Romanian Journal of Math. and Computer Science, 2, 28–40, 2012.
  • [3] M. Cimpoeaş, Stanley depth of squarefree Veronese ideals, An. St. Univ. Ovidius Constanta, 21 (3), 67–71, 2013.
  • [4] M. Cimpoeaş, On the Stanley depth of edge ideals of line and cyclic graphs, Romanian Journal of Math. and Computer Science, 5 (1), 70–75, 2015.
  • [5] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, available at http://cocoa.dima.unige.it.
  • [6] A.M. Duval, B. Goeckner, C.J. Klivans and J.L. Martine, A non-partitionable Cohen- Macaulay simplicial complex, Adv. Math. 299, 381–395, 2016.
  • [7] S.A.S. Fakhari, On the Stanley Depth of Powers of Monomial Ideals, Mathematics, 7, 607, 2019.
  • [8] L. Fouli and S. Morey, A lower bound for depths of powers of edge ideals, J. Algebraic Combin. 42 (3), 829–848, 2015.
  • [9] R. Hammack, W. Imrich and S. Klavar, Handbook of Product Graphs, Second Edition, CRC Press, Boca Raton, FL, 2011.
  • [10] J. Herzog, A survey on Stanley depth, In Monomial ideals, computations and applications, Lecture Notes in Math. 2083, Springer, Heidelberg, 3–45, 2013.
  • [11] J. Herzog, M. Vladoiu and X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (9), 3151–3169, 2009.
  • [12] Z. Iqbal and M. Ishaq, Depth and Stanley depth of edge ideals associated to some line graphs, AIMS Mathematics, 4 (3), 686–698, 2019.
  • [13] Z. Iqbal and M. Ishaq, Depth and Stanley depth of edge ideals of powers of paths and cycles, An. Şt. Univ. Ovidius Constana, 27 (3), 113–135, 2019.
  • [14] Z. Iqbal, M. Ishaq and M. Aamir, Depth and Stanley depth of edge ideals of square paths and square cycles, Comm. Algebra, 46 (3), 1188–1198, 2018.
  • [15] M. Ishaq, Upper bounds for the Stanley depth, Comm. Algebra, 40 (1), 87–97, 2012.
  • [16] M. Ishaq, Values and bounds for the Stanley depth, Carpathian J. Math. 27 (2), 217–224, 2011.
  • [17] M. Ishaq and M.I. Qureshi, Upper and lower bounds for the Stanley depth of certain classes of monomial ideals and their residue class rings, Comm. Algebra, 41 (3), 1107–1116, 2013.
  • [18] M.T. Keller and S.J. Young, Combinatorial reductions for the Stanley depth of I and S/I, Electron. J. Comb. 24 (3), #P3.48, 2017.
  • [19] M.T. Keller, Y. Shen, N. Streib and S.J. Young, On the Stanley depth of squarefree veronese ideals, J. Algebraic Combin. 33 (2), 313–324, 2011.
  • [20] S. Morey, Depths of powers of the edge ideal of a tree, Comm. Algebra, 38 (11), 4042–4055, 2010.
  • [21] R. Okazaki, A lower bound of Stanley depth of monomial ideals, J. Commut. Algebra, 3 (1), 83–88, 2011.
  • [22] M.R. Pournaki, S.A.S. Fakhari and S. Yassemi, Stanley depth of powers of the edge ideals of a forest, Proc. Amer. Math. Soc. 141 (10), 3327–3336, 2013.
  • [23] M.R. Pournaki, S.A.S. Fakhari, M. Tousi and S. Yassemi, What is . . . Stanley depth? Not. Am. Math. Soc. 56, 1106–1108, 2009.
  • [24] A. Rauf, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2), 773–784, 2010.
  • [25] G. Rinaldo, An algorithm to compute the Stanley depth of monomial ideals, Le Matematiche, LXIII(ii), 243–256, 2008.
  • [26] R.P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (2), 175–193, 1982.
  • [27] A. Stefan, Stanley depth of powers of path ideal, http://arxiv.org/pdf/1409.6072.pdf.
  • [28] R.H. Villarreal, Monomial Algebras in:Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 238, 2011.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zahid Iqbal 0000-0003-1549-3584

Muhammad Ishaq This is me 0000-0002-5479-2192

Muhammad Ahsan Binyamin 0000-0003-0717-7557

Publication Date February 4, 2021
Published in Issue Year 2021 Volume: 50 Issue: 1

Cite

APA Iqbal, Z., Ishaq, M., & Binyamin, M. A. (2021). Depth and Stanley depth of the edge ideals of the strong product of some graphs. Hacettepe Journal of Mathematics and Statistics, 50(1), 92-109. https://doi.org/10.15672/hujms.638033
AMA Iqbal Z, Ishaq M, Binyamin MA. Depth and Stanley depth of the edge ideals of the strong product of some graphs. Hacettepe Journal of Mathematics and Statistics. February 2021;50(1):92-109. doi:10.15672/hujms.638033
Chicago Iqbal, Zahid, Muhammad Ishaq, and Muhammad Ahsan Binyamin. “Depth and Stanley Depth of the Edge Ideals of the Strong Product of Some Graphs”. Hacettepe Journal of Mathematics and Statistics 50, no. 1 (February 2021): 92-109. https://doi.org/10.15672/hujms.638033.
EndNote Iqbal Z, Ishaq M, Binyamin MA (February 1, 2021) Depth and Stanley depth of the edge ideals of the strong product of some graphs. Hacettepe Journal of Mathematics and Statistics 50 1 92–109.
IEEE Z. Iqbal, M. Ishaq, and M. A. Binyamin, “Depth and Stanley depth of the edge ideals of the strong product of some graphs”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, pp. 92–109, 2021, doi: 10.15672/hujms.638033.
ISNAD Iqbal, Zahid et al. “Depth and Stanley Depth of the Edge Ideals of the Strong Product of Some Graphs”. Hacettepe Journal of Mathematics and Statistics 50/1 (February 2021), 92-109. https://doi.org/10.15672/hujms.638033.
JAMA Iqbal Z, Ishaq M, Binyamin MA. Depth and Stanley depth of the edge ideals of the strong product of some graphs. Hacettepe Journal of Mathematics and Statistics. 2021;50:92–109.
MLA Iqbal, Zahid et al. “Depth and Stanley Depth of the Edge Ideals of the Strong Product of Some Graphs”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 1, 2021, pp. 92-109, doi:10.15672/hujms.638033.
Vancouver Iqbal Z, Ishaq M, Binyamin MA. Depth and Stanley depth of the edge ideals of the strong product of some graphs. Hacettepe Journal of Mathematics and Statistics. 2021;50(1):92-109.