Inequalities on the geometric-arithmetic index
Year 2021,
Volume: 50 Issue: 3, 778 - 794, 07.06.2021
Ana Granados
,
Ana Portilla
,
Jose Manuel Rodrıguez Garcıa
,
Jose Sigarreta
Abstract
Although the notion of geometric-arithmetic index has been introduced in the chemical graph theory these past years, it has already proved to be useful. The objective of the work we present here is twofold: First, obtaining new relations connecting the geometric-arithmetic index with other topological indices; second, to characterize graphs which are extremal with respect to those relations.
Supporting Institution
Ministerio de Economia y Competitividad, Agencia Estatal de Investigacion, Fondo Europeo de Desarrollo Regional
Project Number
MTM2016-78227-C2-1-P; MTM2017-90584-REDT
References
- [1] H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F-index,
Kuwait J. Sci. 44 (3) 1–8, 2017.
- [2] M.O. Albertson, The irregularity of a graph, Ars Comb. 46, 219–225, 1997.
- [3] A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of Powers of the Degrees
of Graphs: Extremal Results and Bounds, MATCH Commun. Math. Comput. Chem.
80, 5–84, 2018.
- [4] V. Andova and M. Petrusevski, Variable Zagreb Indices and Karamataís Inequality,
MATCH Commun. Math. Comput. Chem. 65, 685–690, 2011.
- [5] M. Aouchiche and P. Hansen, Comparing the geometric-arithmetic Index and the
spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2), 473–482,
2020.
- [6] M. Aouchiche and V. Ganesan, Adjusting geometric-arithmetic index to estimate boil-
ing point, MATCH Commun. Math. Comput. Chem. 84, 483–497, 2020.
- [7] M. Aouchiche, I. El Hallaoui and P. Hansen, Geometric-Arithmetic index and mini-
mum degree of connected graphs, MATCH Commun. Math. Comput. Chem. 83 (1),
179–188, 2020.
- [8] Z. Che and Z. Chen, Lower and Upper Bounds of the Forgotten Topological Index,
MATCH Commun. Math. Comput. Chem. 76, 635–648, 2016.
- [9] Y. Chen and B. Wu On the geometric-arithmetic index of a graph, Discrete Appl.
Math. 254, 268–273, 2019.
- [10] K.C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Com-
put. Chem. 64, 619–630, 2010.
- [11] K.C. Das, I. Gutman and B. Furtula, On first geometric-arithmetic index of graphs,
Discrete Appl. Math. 159, 2030–2037, 2011.
- [12] K.C. Das, I. Gutman and B. Furtula, Survey on Geometric-Arithmetic Indices of
Graphs, MATCH Commun. Math. Comput. Chem. 65, 595–644, 2011.
- [13] S.S. Dragomir, A Survey On Cauchy-Bunyakovosky-Schwarz Type Discrete Inequali-
ties, J. Inequal. Pure and Appl. Math. 4 (3), Art. 63, 2003.
- [14] M. Drmota, Random Trees: An Interplay Between Combinatorics and Probability,
Springer, Wien-New York, 2009.
- [15] M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index,
Commun. Math. Comput. Chem. 68 (1), 217–230, 2012.
- [16] G.H. Fath-Tabar, Old and New Zagreb Indices of Graphs, MATCH Commun. Math.
Comput. Chem. 65, 79–84, 2011.
- [17] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (4),
1184–1190, 2015.
- [18] X. Guo and Y. Gao Arithmetic-geometric spectral radius and energy of graphs,
MATCH Commun. Math. Comput. Chem. 83, 651–660, 2020.
- [19] I. Gutman, Degree–based topological indices, Croat. Chem. Acta 86, 351–361, 2013.
- [20] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem. 50, 83–92, 2004.
- [21] I. Gutman and T. Réti, Zagreb group indices and beyond, Int. J. Chem. Model. 6
(2-3), 191–200, 2014.
- [22] I. Gutman and J. Tošović, Testing the quality of molecular structure descriptors.
Vertex–degreebased topological indices, J. Serb. Chem. Soc. 78 (6), 805–810, 2013.
- [23] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total -electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538, 1972.
- [24] J.C. Hernandez, J.M. Rodriguez and J.M. Sigarreta On the geometric-arithmetic in-
dex by decompositions, J. Math. Chem. 55, 1376–1391, 2017.
- [25] H. Kober, On the arithmetic and geometric means and on Hölderís inequality, Proc.
Amer. Math. Soc. 9, 452–459, 1958.
- [26] X. Li and H. Zhao, Trees with the first smallest and largest generalized topological
indices, MATCH Commun. Math. Comput. Chem. 50, 57–62, 2004.
- [27] X. Li and J. Zheng, A unified approach to the extremal trees for different indices,
MATCH Commun. Math. Comput. Chem. 54, 195–208, 2005.
- [28] M. Liu and B. Liu, Some properties of the first general Zagreb index, Australas. J.
Combin. 47, 285–294, 2010.
- [29] A. Martínez-Pérez, J.M. Rodríguez and J.M. Sigarreta, A new approximation
to the geometric-arithmetic index, J. Math. Chem. 56, 1865–1883, 2018, DOI:
10.1007/s10910-017-0811-3.
- [30] A. Miličević and S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta 77, 97–
101, 2004.
- [31] S. Nikolić, A. Miličević, N. Trinajstić and A. Jurić, On Use of the Variable Zagreb $^\nu M_2$
Index in QSPR: Boiling Points of Benzenoid Hydrocarbons, Molecules 9, 1208–1221,
2004.
- [32] M. Randić, Novel graph theoretical approach to heteroatoms in QSAR, Chemometrics
Intel. Lab. Syst. 10, 213–227, 1991.
- [33] M. Randić, On computation of optimal parameters for multivariate analysis of
structure-property relationship, J. Chem. Inf. Comput. Sci. 31, 970–980, 1991.
- [34] M. Randić, D. Plavšić and N. Lerš, Variable connectivity index for cycle-containing
structures, J. Chem. Inf. Comput. Sci. 41, 657–662, 2001.
- [35] J.M. Rodríguez, J.L. Sánchez and J.M. Sigarreta, On the first general Zagreb index,
J. Math. Chem. 56, 1849–1864, 2018, DOI: 10.1007/s10910-017-0816-y.
- [36] J.M. Rodríguez and J.M. Sigarreta, On the Geometric-Arithmetic Index, MATCH
Commun. Math. Comput. Chem. 74, 103–120, 2015.
- [37] J.M. Rodríguez and J.M. Sigarreta, Spectral properties of geometric-arithmetic index,
Appl. Math. Comput. 277, 142–153, 2016.
- [38] J.M. Rodríguez and J.M. Sigarreta, New Results on the Harmonic Index and Its
Generalizations, MATCH Commun. Math. Comput. Chem. 78 (2), 387–404, 2017.
- [39] J.M. Sigarreta, Bounds for the geometric-arithmetic index of a graph, Miskolc Math.
Notes, 16 (2), 1199–1212, 2015.
- [40] M. Singh, K.Ch. Das, S. Gupta and A.K. Madan, Refined variable Zagreb indices:
highly discriminating topological descriptors for QSAR/QSPR, Int. J. Chem. Model-
ing, 6 (2-3), 403–428, 2014.
- [41] TRC Thermodynamic Tables. Hydrocarbons; Thermodynamic Research Center, The
Texas A & M University System: College Station, TX, 1987.
- [42] R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors
based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem.
64 (2), 359–372, 2010.
- [43] M. Vöge, A.J. Guttmann and I. Jensen, On the number of benzenoid hydrocarbons,
J. Chem. Inf. Comput. Sci. 42, 456–466, 2002.
- [44] D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg
index, Croat. Chem. Acta, 83, 261–273, 2010.
- [45] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and
arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369–1376,
2009.
- [46] D. Vukičević and M. Gašperov, Bond Additive Modeling 1. Adriatic Indices, Croat.
Chem. Acta, 83 (3), 243–260, 2010.
- [47] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69,
17–20, 1947.
- [48] S. Zhang, W. Wang and T.C.E. Cheng, Bicyclic graphs with the first three smallest
and largest values of the first general Zagreb index, MATCH Commun. Math. Comput.
Chem. 55, 579–592, 2006.
- [49] H. Zhang and S. Zhang, Unicyclic graphs with the first three smallest and largest
values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem.
55, 427–438, 2006.
- [50] B. Zhou, I. Gutman and T. Aleksić, A note on Laplacian energy of graphs, MATCH
Commun. Math. Comput. Chem. 60, 441–446, 2008.
- [51] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47,
210–218, 2010.
Year 2021,
Volume: 50 Issue: 3, 778 - 794, 07.06.2021
Ana Granados
,
Ana Portilla
,
Jose Manuel Rodrıguez Garcıa
,
Jose Sigarreta
Project Number
MTM2016-78227-C2-1-P; MTM2017-90584-REDT
References
- [1] H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F-index,
Kuwait J. Sci. 44 (3) 1–8, 2017.
- [2] M.O. Albertson, The irregularity of a graph, Ars Comb. 46, 219–225, 1997.
- [3] A. Ali, I. Gutman, E. Milovanović and I. Milovanović, Sum of Powers of the Degrees
of Graphs: Extremal Results and Bounds, MATCH Commun. Math. Comput. Chem.
80, 5–84, 2018.
- [4] V. Andova and M. Petrusevski, Variable Zagreb Indices and Karamataís Inequality,
MATCH Commun. Math. Comput. Chem. 65, 685–690, 2011.
- [5] M. Aouchiche and P. Hansen, Comparing the geometric-arithmetic Index and the
spectral radius of graphs, MATCH Commun. Math. Comput. Chem. 84 (2), 473–482,
2020.
- [6] M. Aouchiche and V. Ganesan, Adjusting geometric-arithmetic index to estimate boil-
ing point, MATCH Commun. Math. Comput. Chem. 84, 483–497, 2020.
- [7] M. Aouchiche, I. El Hallaoui and P. Hansen, Geometric-Arithmetic index and mini-
mum degree of connected graphs, MATCH Commun. Math. Comput. Chem. 83 (1),
179–188, 2020.
- [8] Z. Che and Z. Chen, Lower and Upper Bounds of the Forgotten Topological Index,
MATCH Commun. Math. Comput. Chem. 76, 635–648, 2016.
- [9] Y. Chen and B. Wu On the geometric-arithmetic index of a graph, Discrete Appl.
Math. 254, 268–273, 2019.
- [10] K.C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math. Com-
put. Chem. 64, 619–630, 2010.
- [11] K.C. Das, I. Gutman and B. Furtula, On first geometric-arithmetic index of graphs,
Discrete Appl. Math. 159, 2030–2037, 2011.
- [12] K.C. Das, I. Gutman and B. Furtula, Survey on Geometric-Arithmetic Indices of
Graphs, MATCH Commun. Math. Comput. Chem. 65, 595–644, 2011.
- [13] S.S. Dragomir, A Survey On Cauchy-Bunyakovosky-Schwarz Type Discrete Inequali-
ties, J. Inequal. Pure and Appl. Math. 4 (3), Art. 63, 2003.
- [14] M. Drmota, Random Trees: An Interplay Between Combinatorics and Probability,
Springer, Wien-New York, 2009.
- [15] M. Eliasi, A. Iranmanesh and I. Gutman, Multiplicative versions of first Zagreb index,
Commun. Math. Comput. Chem. 68 (1), 217–230, 2012.
- [16] G.H. Fath-Tabar, Old and New Zagreb Indices of Graphs, MATCH Commun. Math.
Comput. Chem. 65, 79–84, 2011.
- [17] B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (4),
1184–1190, 2015.
- [18] X. Guo and Y. Gao Arithmetic-geometric spectral radius and energy of graphs,
MATCH Commun. Math. Comput. Chem. 83, 651–660, 2020.
- [19] I. Gutman, Degree–based topological indices, Croat. Chem. Acta 86, 351–361, 2013.
- [20] I. Gutman and K.C. Das, The first Zagreb index 30 years after, MATCH Commun.
Math. Comput. Chem. 50, 83–92, 2004.
- [21] I. Gutman and T. Réti, Zagreb group indices and beyond, Int. J. Chem. Model. 6
(2-3), 191–200, 2014.
- [22] I. Gutman and J. Tošović, Testing the quality of molecular structure descriptors.
Vertex–degreebased topological indices, J. Serb. Chem. Soc. 78 (6), 805–810, 2013.
- [23] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total -electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535–538, 1972.
- [24] J.C. Hernandez, J.M. Rodriguez and J.M. Sigarreta On the geometric-arithmetic in-
dex by decompositions, J. Math. Chem. 55, 1376–1391, 2017.
- [25] H. Kober, On the arithmetic and geometric means and on Hölderís inequality, Proc.
Amer. Math. Soc. 9, 452–459, 1958.
- [26] X. Li and H. Zhao, Trees with the first smallest and largest generalized topological
indices, MATCH Commun. Math. Comput. Chem. 50, 57–62, 2004.
- [27] X. Li and J. Zheng, A unified approach to the extremal trees for different indices,
MATCH Commun. Math. Comput. Chem. 54, 195–208, 2005.
- [28] M. Liu and B. Liu, Some properties of the first general Zagreb index, Australas. J.
Combin. 47, 285–294, 2010.
- [29] A. Martínez-Pérez, J.M. Rodríguez and J.M. Sigarreta, A new approximation
to the geometric-arithmetic index, J. Math. Chem. 56, 1865–1883, 2018, DOI:
10.1007/s10910-017-0811-3.
- [30] A. Miličević and S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta 77, 97–
101, 2004.
- [31] S. Nikolić, A. Miličević, N. Trinajstić and A. Jurić, On Use of the Variable Zagreb $^\nu M_2$
Index in QSPR: Boiling Points of Benzenoid Hydrocarbons, Molecules 9, 1208–1221,
2004.
- [32] M. Randić, Novel graph theoretical approach to heteroatoms in QSAR, Chemometrics
Intel. Lab. Syst. 10, 213–227, 1991.
- [33] M. Randić, On computation of optimal parameters for multivariate analysis of
structure-property relationship, J. Chem. Inf. Comput. Sci. 31, 970–980, 1991.
- [34] M. Randić, D. Plavšić and N. Lerš, Variable connectivity index for cycle-containing
structures, J. Chem. Inf. Comput. Sci. 41, 657–662, 2001.
- [35] J.M. Rodríguez, J.L. Sánchez and J.M. Sigarreta, On the first general Zagreb index,
J. Math. Chem. 56, 1849–1864, 2018, DOI: 10.1007/s10910-017-0816-y.
- [36] J.M. Rodríguez and J.M. Sigarreta, On the Geometric-Arithmetic Index, MATCH
Commun. Math. Comput. Chem. 74, 103–120, 2015.
- [37] J.M. Rodríguez and J.M. Sigarreta, Spectral properties of geometric-arithmetic index,
Appl. Math. Comput. 277, 142–153, 2016.
- [38] J.M. Rodríguez and J.M. Sigarreta, New Results on the Harmonic Index and Its
Generalizations, MATCH Commun. Math. Comput. Chem. 78 (2), 387–404, 2017.
- [39] J.M. Sigarreta, Bounds for the geometric-arithmetic index of a graph, Miskolc Math.
Notes, 16 (2), 1199–1212, 2015.
- [40] M. Singh, K.Ch. Das, S. Gupta and A.K. Madan, Refined variable Zagreb indices:
highly discriminating topological descriptors for QSAR/QSPR, Int. J. Chem. Model-
ing, 6 (2-3), 403–428, 2014.
- [41] TRC Thermodynamic Tables. Hydrocarbons; Thermodynamic Research Center, The
Texas A & M University System: College Station, TX, 1987.
- [42] R. Todeschini and V. Consonni, New local vertex invariants and molecular descriptors
based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem.
64 (2), 359–372, 2010.
- [43] M. Vöge, A.J. Guttmann and I. Jensen, On the number of benzenoid hydrocarbons,
J. Chem. Inf. Comput. Sci. 42, 456–466, 2002.
- [44] D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg
index, Croat. Chem. Acta, 83, 261–273, 2010.
- [45] D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and
arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46, 1369–1376,
2009.
- [46] D. Vukičević and M. Gašperov, Bond Additive Modeling 1. Adriatic Indices, Croat.
Chem. Acta, 83 (3), 243–260, 2010.
- [47] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69,
17–20, 1947.
- [48] S. Zhang, W. Wang and T.C.E. Cheng, Bicyclic graphs with the first three smallest
and largest values of the first general Zagreb index, MATCH Commun. Math. Comput.
Chem. 55, 579–592, 2006.
- [49] H. Zhang and S. Zhang, Unicyclic graphs with the first three smallest and largest
values of the first general Zagreb index, MATCH Commun. Math. Comput. Chem.
55, 427–438, 2006.
- [50] B. Zhou, I. Gutman and T. Aleksić, A note on Laplacian energy of graphs, MATCH
Commun. Math. Comput. Chem. 60, 441–446, 2008.
- [51] B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47,
210–218, 2010.