Research Article
BibTex RIS Cite

Linear methods of approximation in weighted Lebesgue spaces with variable exponent

Year 2021, Volume: 50 Issue: 3, 744 - 753, 07.06.2021
https://doi.org/10.15672/hujms.798028

Abstract

Some estimations in below for the deviations conducted by the Zygmund means and by the Abel-Poisson sums in the weighted Lebesgue spaces with variable exponent are obtained. In the classical Lebesgue spaces these estimations were proved by M. F. Timan. The considered weight functions satisfy the well known Muckenhout condition. For the proofs of main results some estimations obtained in the classical weighted Lebesgue spaces and also an extrapolation theorem proved in the weighted variable exponent Lebesgue spaces are used. Main results are new even in the nonweighted variable exponent Lebesgue spaces.

Supporting Institution

TUBITAK grant 114F422: Approximation Problems in the Variable Exponent Lebesgue Spaces

Project Number

114F422

References

  • [1] R. Akgun, Trigonometric Approximation of Functions in Generalized Lebesgue Spaces With Variable Exponent, Ukrainian Math. J. 63 (1), 3–23, 2011.
  • [2] R. Akgun, Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth, Georgian Math. J. 18, 203–235, 2011.
  • [3] B.T. Bilalov and Z.G. Guseynov, Basicity of a system of exponents with a piece-wise linear phase in variable spaces, Mediterr. J. Math. 9 (3), 487–498, 2012.
  • [4] D.V. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal. 14 (3), 361–374, 2011.
  • [5] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundation and Har- monic Analysis, Birkhäsuser, 2013.
  • [6] D.V. Cruz Uribe and D.L. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 (2), 1205–1235, 2017.
  • [7] L. Diening and M. Růžiˆcka, Calderon-Zygmund operators on generalized Lebesgue spaces $L^{p\left( x\right) }$ and problems related to fluid dynamic, J. Reine Angew. Math. 563, 197– 220, 2003.
  • [8] A. Guven, Trigonometric Approximation By Matrix Transforms in $L^{p\left( x\right) }$ Space, Anal. Appl. 10 (1), 47–65, 2012.
  • [9] A. Guven and D.M. Israfilov, Trigonometric Approximation in Generalized Lebesgue Spaces $L^{p\left( x\right) }$, J. Math. Inequal. 4 (2), 285–299, 2010.
  • [10] D.M. Israfilov and A. Testici, Approximation in Smirnov Classes with Variable Exponent, Complex Var. Elliptic Equ. 60(9), 1243–1253, 2015.
  • [11] D.M. Israfilov and A. Testici, Approximation by Matrix Transforms in Weighted Lebesgue Spaces with Variable Exponent, Results Math. 73 (8), 2018, https://doi.org/10.1007/s00025-018-0762-4.
  • [12] D.M. Israfilov, V. Kokilashvili and S.G. Samko, Approximation In Weighted Lebesgue and Smirnov Spaces With Variable Exponents, Proceed. of A. Razmadze Math. Insti- tute, 143, 25–35, 2007.
  • [13] S.Z. Jafarov, Linear Methods for Summing Fourier Series and Approximation in Weighted Lebesgue Spaces with Variable Exponents, Ukrainian Math. J. 66 (10), 1509– 1518, 2015.
  • [14] S.Z. Jafarov, Approximation by trigonometric polynomials in subspace of variable ex- ponent grand Lebesgue spaces, Global Journal of Mathematics, 8 (2), 836–843, 2016.
  • [15] S.Z. Jafarov, Linear methods of summing Fourier series and approximation in weighted Orlicz spaces, Turkish J. Math. 42 (6), 2916–2925, 2018.
  • [16] A. Kamińska, Indices, convexity and concavity in Musileak-Orlicz spaces, Funct. Ap- prox. Comment. Math. 26, 67–84, 1998.
  • [17] D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259(1), 235–254, 1980.
  • [18] T.I. Najafov and N.P. Nasibova, On the Noetherness of the Riemann problem in a generalized weighted Hardy classes, Azerbaijan J. Math. 5 (2), 109–139, 2015.
  • [19] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3, 200–212, 1931.
  • [20] M. Růžicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.
  • [21] I.I. Sharapudinov, Some questions in approximation theory for Lebesgue spaces with variable exponent, Itogi Nauki. Yug Rossii. Mat. Monograf 5, Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences and Republic of North Ossetia-Alania, Vladikavkaz (Russian), 2012.
  • [22] I.I. Sharapudinov, Approximation of functions in $L_{2\pi }^{p\left( x\right) }$ by trigonometric polynomials, Izvestiya RAN : Ser. Math. 77 (2), 197–224, 2013; English transl., Izvestiya : Mathematics 77 (2), 407–434. 2013.
  • [23] I.I. Sharapudinov, On Direct and Inverse Theorems of Approximation Theory In Vari- able Lebesgue Space And Sobolev Spaces, Azerbaijan J. Math. 4 (1), 55–72, 2014.
  • [24] A. Testici, Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space With Variable Exponent, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2), 2014–2025, 2019.
  • [25] A.F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan, New York, 1963.
  • [26] M.F. Timan, Best approximation of a function and linear methods of summing Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 29 (3), 587–604, 1965.
  • [27] S.S. Volosivest, Approximation of functions and their conjugates in variable Lebesgue spaces, Math. Sb. 208(1), 48–64, 2017.
  • [28] A. Zygmund, Trigonometric Series, Vol. I and II, Cambridge University Press, 1959.
Year 2021, Volume: 50 Issue: 3, 744 - 753, 07.06.2021
https://doi.org/10.15672/hujms.798028

Abstract

Project Number

114F422

References

  • [1] R. Akgun, Trigonometric Approximation of Functions in Generalized Lebesgue Spaces With Variable Exponent, Ukrainian Math. J. 63 (1), 3–23, 2011.
  • [2] R. Akgun, Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth, Georgian Math. J. 18, 203–235, 2011.
  • [3] B.T. Bilalov and Z.G. Guseynov, Basicity of a system of exponents with a piece-wise linear phase in variable spaces, Mediterr. J. Math. 9 (3), 487–498, 2012.
  • [4] D.V. Cruz-Uribe, L. Diening and P. Hästö, The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal. 14 (3), 361–374, 2011.
  • [5] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces Foundation and Har- monic Analysis, Birkhäsuser, 2013.
  • [6] D.V. Cruz Uribe and D.L. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc. 369 (2), 1205–1235, 2017.
  • [7] L. Diening and M. Růžiˆcka, Calderon-Zygmund operators on generalized Lebesgue spaces $L^{p\left( x\right) }$ and problems related to fluid dynamic, J. Reine Angew. Math. 563, 197– 220, 2003.
  • [8] A. Guven, Trigonometric Approximation By Matrix Transforms in $L^{p\left( x\right) }$ Space, Anal. Appl. 10 (1), 47–65, 2012.
  • [9] A. Guven and D.M. Israfilov, Trigonometric Approximation in Generalized Lebesgue Spaces $L^{p\left( x\right) }$, J. Math. Inequal. 4 (2), 285–299, 2010.
  • [10] D.M. Israfilov and A. Testici, Approximation in Smirnov Classes with Variable Exponent, Complex Var. Elliptic Equ. 60(9), 1243–1253, 2015.
  • [11] D.M. Israfilov and A. Testici, Approximation by Matrix Transforms in Weighted Lebesgue Spaces with Variable Exponent, Results Math. 73 (8), 2018, https://doi.org/10.1007/s00025-018-0762-4.
  • [12] D.M. Israfilov, V. Kokilashvili and S.G. Samko, Approximation In Weighted Lebesgue and Smirnov Spaces With Variable Exponents, Proceed. of A. Razmadze Math. Insti- tute, 143, 25–35, 2007.
  • [13] S.Z. Jafarov, Linear Methods for Summing Fourier Series and Approximation in Weighted Lebesgue Spaces with Variable Exponents, Ukrainian Math. J. 66 (10), 1509– 1518, 2015.
  • [14] S.Z. Jafarov, Approximation by trigonometric polynomials in subspace of variable ex- ponent grand Lebesgue spaces, Global Journal of Mathematics, 8 (2), 836–843, 2016.
  • [15] S.Z. Jafarov, Linear methods of summing Fourier series and approximation in weighted Orlicz spaces, Turkish J. Math. 42 (6), 2916–2925, 2018.
  • [16] A. Kamińska, Indices, convexity and concavity in Musileak-Orlicz spaces, Funct. Ap- prox. Comment. Math. 26, 67–84, 1998.
  • [17] D.S. Kurtz, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. Amer. Math. Soc. 259(1), 235–254, 1980.
  • [18] T.I. Najafov and N.P. Nasibova, On the Noetherness of the Riemann problem in a generalized weighted Hardy classes, Azerbaijan J. Math. 5 (2), 109–139, 2015.
  • [19] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3, 200–212, 1931.
  • [20] M. Růžicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748, Springer-Verlag, Berlin, 2000.
  • [21] I.I. Sharapudinov, Some questions in approximation theory for Lebesgue spaces with variable exponent, Itogi Nauki. Yug Rossii. Mat. Monograf 5, Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences and Republic of North Ossetia-Alania, Vladikavkaz (Russian), 2012.
  • [22] I.I. Sharapudinov, Approximation of functions in $L_{2\pi }^{p\left( x\right) }$ by trigonometric polynomials, Izvestiya RAN : Ser. Math. 77 (2), 197–224, 2013; English transl., Izvestiya : Mathematics 77 (2), 407–434. 2013.
  • [23] I.I. Sharapudinov, On Direct and Inverse Theorems of Approximation Theory In Vari- able Lebesgue Space And Sobolev Spaces, Azerbaijan J. Math. 4 (1), 55–72, 2014.
  • [24] A. Testici, Approximation by Nörlund and Riesz Means in Weighted Lebesgue Space With Variable Exponent, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2), 2014–2025, 2019.
  • [25] A.F. Timan, Theory of Approximation of Functions of a Real Variable, Macmillan, New York, 1963.
  • [26] M.F. Timan, Best approximation of a function and linear methods of summing Fourier series, Izv. Akad. Nauk SSSR Ser. Mat. 29 (3), 587–604, 1965.
  • [27] S.S. Volosivest, Approximation of functions and their conjugates in variable Lebesgue spaces, Math. Sb. 208(1), 48–64, 2017.
  • [28] A. Zygmund, Trigonometric Series, Vol. I and II, Cambridge University Press, 1959.
There are 28 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Ahmet Testici 0000-0002-1163-7037

Daniyal M. İsrafilzade 0000-0003-3072-9989

Project Number 114F422
Publication Date June 7, 2021
Published in Issue Year 2021 Volume: 50 Issue: 3

Cite

APA Testici, A., & M. İsrafilzade, D. (2021). Linear methods of approximation in weighted Lebesgue spaces with variable exponent. Hacettepe Journal of Mathematics and Statistics, 50(3), 744-753. https://doi.org/10.15672/hujms.798028
AMA Testici A, M. İsrafilzade D. Linear methods of approximation in weighted Lebesgue spaces with variable exponent. Hacettepe Journal of Mathematics and Statistics. June 2021;50(3):744-753. doi:10.15672/hujms.798028
Chicago Testici, Ahmet, and Daniyal M. İsrafilzade. “Linear Methods of Approximation in Weighted Lebesgue Spaces With Variable Exponent”. Hacettepe Journal of Mathematics and Statistics 50, no. 3 (June 2021): 744-53. https://doi.org/10.15672/hujms.798028.
EndNote Testici A, M. İsrafilzade D (June 1, 2021) Linear methods of approximation in weighted Lebesgue spaces with variable exponent. Hacettepe Journal of Mathematics and Statistics 50 3 744–753.
IEEE A. Testici and D. M. İsrafilzade, “Linear methods of approximation in weighted Lebesgue spaces with variable exponent”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, pp. 744–753, 2021, doi: 10.15672/hujms.798028.
ISNAD Testici, Ahmet - M. İsrafilzade, Daniyal. “Linear Methods of Approximation in Weighted Lebesgue Spaces With Variable Exponent”. Hacettepe Journal of Mathematics and Statistics 50/3 (June 2021), 744-753. https://doi.org/10.15672/hujms.798028.
JAMA Testici A, M. İsrafilzade D. Linear methods of approximation in weighted Lebesgue spaces with variable exponent. Hacettepe Journal of Mathematics and Statistics. 2021;50:744–753.
MLA Testici, Ahmet and Daniyal M. İsrafilzade. “Linear Methods of Approximation in Weighted Lebesgue Spaces With Variable Exponent”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 3, 2021, pp. 744-53, doi:10.15672/hujms.798028.
Vancouver Testici A, M. İsrafilzade D. Linear methods of approximation in weighted Lebesgue spaces with variable exponent. Hacettepe Journal of Mathematics and Statistics. 2021;50(3):744-53.