Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 4, 982 - 990, 06.08.2021
https://doi.org/10.15672/hujms.732183

Abstract

References

  • [1] T. Ando and F. Hiai, Log-majorization and complementary Golden–Thompson type inequalities, Linear Alg. Appl. 197/198, 113–131, 1994.
  • [2] T. Ando and F. Hiai, Operator log-convex functions and operator means, Math. Ann. 350 (3), 611–630, 2011.
  • [3] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann. 315, 771–780, 1999.
  • [4] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
  • [5] J.C. Bourin and M. Uchiyama, A matrix subadditivity inequality for $f (A+B)$ and $f (A)+ f (B)$, Linear Algebra Appl. 423, 512–518, 2007.
  • [6] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
  • [7] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246, 205-224, 1980.
  • [8] M. Lin, On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl. 402, 127–132, 2013.
  • [9] J. Mićić, Z. Pavić and J. Pečarić, Jensen’s inequality for operators without operator convexity, Linear Algebra Appl. 434, 1228–1237, 2011.
  • [10] H.R. Moradi, Z. Heydarbeygi and M. Sababheh, Subadditive inequalities for operators, Math. Ineq. Appl. 23 (1), 317–327, 2020.
  • [11] R. Nakamoto and M. Nakamura, Operator mean and Kantorovich inequality, Math. Japon. 44 (3), 495–498, 1996.
  • [12] M. Uchiyama, Operator monotone functions, positive definite kernels and majorization, Proc. Amer. Math. Soc. 138 (11), 3985–3996, 2010.

Separated spectra and operator inequalities

Year 2021, Volume: 50 Issue: 4, 982 - 990, 06.08.2021
https://doi.org/10.15672/hujms.732183

Abstract

The main goal of this article is to show that many inequalities that are not valid in operator theory become true if we add a separation condition on the spectra. The applications include showing how monotone functions behave like operator monotone functions and how the Choi-Davis inequality becomes valid for convex functions under this separation condition.

References

  • [1] T. Ando and F. Hiai, Log-majorization and complementary Golden–Thompson type inequalities, Linear Alg. Appl. 197/198, 113–131, 1994.
  • [2] T. Ando and F. Hiai, Operator log-convex functions and operator means, Math. Ann. 350 (3), 611–630, 2011.
  • [3] T. Ando and X. Zhan, Norm inequalities related to operator monotone functions, Math. Ann. 315, 771–780, 1999.
  • [4] R. Bhatia, Matrix analysis, Springer-Verlag, New York, 1997.
  • [5] J.C. Bourin and M. Uchiyama, A matrix subadditivity inequality for $f (A+B)$ and $f (A)+ f (B)$, Linear Algebra Appl. 423, 512–518, 2007.
  • [6] T. Furuta, J. Micic Hot, J. Pecaric and Y. Seo, Mond-Pecaric Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
  • [7] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246, 205-224, 1980.
  • [8] M. Lin, On an operator Kantorovich inequality for positive linear maps, J. Math. Anal. Appl. 402, 127–132, 2013.
  • [9] J. Mićić, Z. Pavić and J. Pečarić, Jensen’s inequality for operators without operator convexity, Linear Algebra Appl. 434, 1228–1237, 2011.
  • [10] H.R. Moradi, Z. Heydarbeygi and M. Sababheh, Subadditive inequalities for operators, Math. Ineq. Appl. 23 (1), 317–327, 2020.
  • [11] R. Nakamoto and M. Nakamura, Operator mean and Kantorovich inequality, Math. Japon. 44 (3), 495–498, 1996.
  • [12] M. Uchiyama, Operator monotone functions, positive definite kernels and majorization, Proc. Amer. Math. Soc. 138 (11), 3985–3996, 2010.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Mohammad Sababheh 0000-0002-1321-2702

Hamid Reza Moradı 0000-0002-0233-0455

Publication Date August 6, 2021
Published in Issue Year 2021 Volume: 50 Issue: 4

Cite

APA Sababheh, M., & Moradı, H. R. (2021). Separated spectra and operator inequalities. Hacettepe Journal of Mathematics and Statistics, 50(4), 982-990. https://doi.org/10.15672/hujms.732183
AMA Sababheh M, Moradı HR. Separated spectra and operator inequalities. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):982-990. doi:10.15672/hujms.732183
Chicago Sababheh, Mohammad, and Hamid Reza Moradı. “Separated Spectra and Operator Inequalities”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 982-90. https://doi.org/10.15672/hujms.732183.
EndNote Sababheh M, Moradı HR (August 1, 2021) Separated spectra and operator inequalities. Hacettepe Journal of Mathematics and Statistics 50 4 982–990.
IEEE M. Sababheh and H. R. Moradı, “Separated spectra and operator inequalities”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 982–990, 2021, doi: 10.15672/hujms.732183.
ISNAD Sababheh, Mohammad - Moradı, Hamid Reza. “Separated Spectra and Operator Inequalities”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 982-990. https://doi.org/10.15672/hujms.732183.
JAMA Sababheh M, Moradı HR. Separated spectra and operator inequalities. Hacettepe Journal of Mathematics and Statistics. 2021;50:982–990.
MLA Sababheh, Mohammad and Hamid Reza Moradı. “Separated Spectra and Operator Inequalities”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 982-90, doi:10.15672/hujms.732183.
Vancouver Sababheh M, Moradı HR. Separated spectra and operator inequalities. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):982-90.