Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 4, 1111 - 1122, 06.08.2021
https://doi.org/10.15672/hujms.779544

Abstract

References

  • [1] G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
  • [2] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités, Communic. Soc. Math. Charkow série 2 13, 1–2, 1912.
  • [3] X. Chen, J. Tan, Z. Liu and J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450 (1), 244–261, 2017.
  • [4] S. Cooper and S. Waldron, The eigenstructure of the Bernstein operator, J. Approx. Theory, 105 (1), 133–165, 2000.
  • [5] S. Cooper and S.Waldron, The diagonalisation of the multivariate Bernstein operator, J. Approx. Theory, 117 (1), 103–131, 2002.
  • [6] H. Gonska, I. Raşa and E.D. Stˇanilˇa, The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators, Mediterr. J. Math. 11 (2), 561–576, 2014.
  • [7] H. Gonska, M. Heilmann and I. Raşa, Eigenstructure of the genuine beta operators of Lupaş and Mühlbach, Stud. Univ. Babeş-Bolyai Math 61 (3), 383–388, 2016.
  • [8] M. Heilmann and I. Raşa, Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators, Positivity, 21 (3), 897–910, 2017.
  • [9] A. II’inskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116 (1), 100–112, 2002.
  • [10] U. Itai, On the eigenstructure of the Bernstein kernel, Electron. Trans. Numer. Anal. 25, 431–438, 2006.
  • [11] R.P. Kelisky and T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math. 21, 511–520, 1967.
  • [12] A. Lupaş, q-Analogue of the Bernstein operator, in: Seminer on Numerical and Statistical Calculus 9, University of Cluj-Napoca.
  • [13] I.Ya. Novikov, Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets, Math. Notes, 71, (1-2), 217–229, 2002.
  • [14] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 (2), 232–255, 2003.
  • [15] S. Ostrovska, The first decade of the q-Bernstein polynomials: results and perspectives, J. Math. Anal. Approx. Theory, 2 (1), 35–51, 2007.
  • [16] S. Ostrovska and M. Turan, On the eigenvectors of the q-Bernstein operators, Math. Methods Appl. Sci. 37 (4), 562–570, 2014.
  • [17] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math, 4 (1-4), 511–518, 1997.
  • [18] C. Qing-Bo and Xu. Xiao-Wei, Shape-preserving properties of a new family of generalized Bernstein operators, J. Inequal. Appl. 2018, 241, 2018.
  • [19] V.S. Videnskii, On some classes of q-parametric positive linear operators Selected topics in Complex analysis, Oper. Theory Adv. Appl. 158, 213–222, 2005.
  • [20] H. Wang and S. Ostrovska, The norm estimates for the q-Bernstein operator in the case q > 1. Math. Comp. 79, 353–363, 2010.
  • [21] S. Wang and C. Zhang, Eigenstructure for binomial operators, Studia Sci. Math. Hungar. 56 (2), 166–176, 2019.

On the eigenstructure of the $(\alpha,q)$-Bernstein operator

Year 2021, Volume: 50 Issue: 4, 1111 - 1122, 06.08.2021
https://doi.org/10.15672/hujms.779544

Abstract

The eigenvalues and eigenvectors of $(\alpha,q)$-Bernstein operators are unknown and not studied in the literature. As the main result of this article, the eigenvalues and eigenvectors of $(\alpha,q)$-Bernstein operators are obtained. Moreover, we will give the asymptotic behaviour of these eigenvalues and eigenvectors for all $q>0.$ Some eigenvectors for various values of $\alpha$ and $q$ are depicted.

References

  • [1] G.E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999.
  • [2] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités, Communic. Soc. Math. Charkow série 2 13, 1–2, 1912.
  • [3] X. Chen, J. Tan, Z. Liu and J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450 (1), 244–261, 2017.
  • [4] S. Cooper and S. Waldron, The eigenstructure of the Bernstein operator, J. Approx. Theory, 105 (1), 133–165, 2000.
  • [5] S. Cooper and S.Waldron, The diagonalisation of the multivariate Bernstein operator, J. Approx. Theory, 117 (1), 103–131, 2002.
  • [6] H. Gonska, I. Raşa and E.D. Stˇanilˇa, The eigenstructure of operators linking the Bernstein and the genuine Bernstein-Durrmeyer operators, Mediterr. J. Math. 11 (2), 561–576, 2014.
  • [7] H. Gonska, M. Heilmann and I. Raşa, Eigenstructure of the genuine beta operators of Lupaş and Mühlbach, Stud. Univ. Babeş-Bolyai Math 61 (3), 383–388, 2016.
  • [8] M. Heilmann and I. Raşa, Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators, Positivity, 21 (3), 897–910, 2017.
  • [9] A. II’inskii and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory, 116 (1), 100–112, 2002.
  • [10] U. Itai, On the eigenstructure of the Bernstein kernel, Electron. Trans. Numer. Anal. 25, 431–438, 2006.
  • [11] R.P. Kelisky and T.J. Rivlin, Iterates of Bernstein polynomials, Pacific J. Math. 21, 511–520, 1967.
  • [12] A. Lupaş, q-Analogue of the Bernstein operator, in: Seminer on Numerical and Statistical Calculus 9, University of Cluj-Napoca.
  • [13] I.Ya. Novikov, Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets, Math. Notes, 71, (1-2), 217–229, 2002.
  • [14] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory, 123 (2), 232–255, 2003.
  • [15] S. Ostrovska, The first decade of the q-Bernstein polynomials: results and perspectives, J. Math. Anal. Approx. Theory, 2 (1), 35–51, 2007.
  • [16] S. Ostrovska and M. Turan, On the eigenvectors of the q-Bernstein operators, Math. Methods Appl. Sci. 37 (4), 562–570, 2014.
  • [17] G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math, 4 (1-4), 511–518, 1997.
  • [18] C. Qing-Bo and Xu. Xiao-Wei, Shape-preserving properties of a new family of generalized Bernstein operators, J. Inequal. Appl. 2018, 241, 2018.
  • [19] V.S. Videnskii, On some classes of q-parametric positive linear operators Selected topics in Complex analysis, Oper. Theory Adv. Appl. 158, 213–222, 2005.
  • [20] H. Wang and S. Ostrovska, The norm estimates for the q-Bernstein operator in the case q > 1. Math. Comp. 79, 353–363, 2010.
  • [21] S. Wang and C. Zhang, Eigenstructure for binomial operators, Studia Sci. Math. Hungar. 56 (2), 166–176, 2019.
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Bülent Köroğlu 0000-0002-7841-8234

Fatma Taşdelen Yeşildal 0000-0002-6291-1649

Publication Date August 6, 2021
Published in Issue Year 2021 Volume: 50 Issue: 4

Cite

APA Köroğlu, B., & Taşdelen Yeşildal, F. (2021). On the eigenstructure of the $(\alpha,q)$-Bernstein operator. Hacettepe Journal of Mathematics and Statistics, 50(4), 1111-1122. https://doi.org/10.15672/hujms.779544
AMA Köroğlu B, Taşdelen Yeşildal F. On the eigenstructure of the $(\alpha,q)$-Bernstein operator. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):1111-1122. doi:10.15672/hujms.779544
Chicago Köroğlu, Bülent, and Fatma Taşdelen Yeşildal. “On the Eigenstructure of the $(\alpha,q)$-Bernstein Operator”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 1111-22. https://doi.org/10.15672/hujms.779544.
EndNote Köroğlu B, Taşdelen Yeşildal F (August 1, 2021) On the eigenstructure of the $(\alpha,q)$-Bernstein operator. Hacettepe Journal of Mathematics and Statistics 50 4 1111–1122.
IEEE B. Köroğlu and F. Taşdelen Yeşildal, “On the eigenstructure of the $(\alpha,q)$-Bernstein operator”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 1111–1122, 2021, doi: 10.15672/hujms.779544.
ISNAD Köroğlu, Bülent - Taşdelen Yeşildal, Fatma. “On the Eigenstructure of the $(\alpha,q)$-Bernstein Operator”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 1111-1122. https://doi.org/10.15672/hujms.779544.
JAMA Köroğlu B, Taşdelen Yeşildal F. On the eigenstructure of the $(\alpha,q)$-Bernstein operator. Hacettepe Journal of Mathematics and Statistics. 2021;50:1111–1122.
MLA Köroğlu, Bülent and Fatma Taşdelen Yeşildal. “On the Eigenstructure of the $(\alpha,q)$-Bernstein Operator”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 1111-22, doi:10.15672/hujms.779544.
Vancouver Köroğlu B, Taşdelen Yeşildal F. On the eigenstructure of the $(\alpha,q)$-Bernstein operator. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):1111-22.