Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 4, 991 - 1001, 06.08.2021
https://doi.org/10.15672/hujms.827556

Abstract

References

  • [1] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, 51-62, 1999.
  • [2] L. Boxer, Fixed point sets in digital topology, 2, Appl. Gen. Topol. 21 (1), 111-133, 2020.
  • [3] L. Boxer, Convexity and Freezing Sets in Digital Topology, Appl. Gen. Topol. 22 (1), 121-137, 2021.
  • [4] L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Appl. Gen. Topol. 21 (1), 87-110, 2020.
  • [5] L. Chen, Gradually varied surface and its optimal uniform approximation, SPIE Proceedings 2182, 300-307, 1994.
  • [6] L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004.
  • [7] J. Haarmann, M.P. Murphy, C.S. Peters, and P.C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Vision 53, 288-302, 2015.
  • [8] A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (8), 621-630, 1979.
  • [9] A. Rosenfeld, ‘Continuous’ functions on digital pictures, Pattern Recognit. Lett. 4, 177-184, 1986.

Subsets and freezing sets in the digital plane

Year 2021, Volume: 50 Issue: 4, 991 - 1001, 06.08.2021
https://doi.org/10.15672/hujms.827556

Abstract

We continue the study of freezing sets for digital images introduced in [L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Applied General Topology 2020; L. Boxer, Fixed point sets in digital topology, 2, Applied General Topology 2020; L. Boxer, Convexity and Freezing Sets in Digital Topology, Applied General Topology, 2021]. We prove methods for obtaining freezing sets for digital images $(X,c_i)$ for $X \subset \mathbb{Z}^2$ and $i \in \{1,2\}$. We give examples to show how these methods can lead to the determination of minimal freezing sets.

References

  • [1] L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10, 51-62, 1999.
  • [2] L. Boxer, Fixed point sets in digital topology, 2, Appl. Gen. Topol. 21 (1), 111-133, 2020.
  • [3] L. Boxer, Convexity and Freezing Sets in Digital Topology, Appl. Gen. Topol. 22 (1), 121-137, 2021.
  • [4] L. Boxer and P.C. Staecker, Fixed point sets in digital topology, 1, Appl. Gen. Topol. 21 (1), 87-110, 2020.
  • [5] L. Chen, Gradually varied surface and its optimal uniform approximation, SPIE Proceedings 2182, 300-307, 1994.
  • [6] L. Chen, Discrete Surfaces and Manifolds, Scientific Practical Computing, Rockville, MD, 2004.
  • [7] J. Haarmann, M.P. Murphy, C.S. Peters, and P.C. Staecker, Homotopy equivalence in finite digital images, J. Math. Imaging Vision 53, 288-302, 2015.
  • [8] A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (8), 621-630, 1979.
  • [9] A. Rosenfeld, ‘Continuous’ functions on digital pictures, Pattern Recognit. Lett. 4, 177-184, 1986.
There are 9 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Laurence Boxer 0000-0001-7905-9643

Publication Date August 6, 2021
Published in Issue Year 2021 Volume: 50 Issue: 4

Cite

APA Boxer, L. (2021). Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics, 50(4), 991-1001. https://doi.org/10.15672/hujms.827556
AMA Boxer L. Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics. August 2021;50(4):991-1001. doi:10.15672/hujms.827556
Chicago Boxer, Laurence. “Subsets and Freezing Sets in the Digital Plane”. Hacettepe Journal of Mathematics and Statistics 50, no. 4 (August 2021): 991-1001. https://doi.org/10.15672/hujms.827556.
EndNote Boxer L (August 1, 2021) Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics 50 4 991–1001.
IEEE L. Boxer, “Subsets and freezing sets in the digital plane”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, pp. 991–1001, 2021, doi: 10.15672/hujms.827556.
ISNAD Boxer, Laurence. “Subsets and Freezing Sets in the Digital Plane”. Hacettepe Journal of Mathematics and Statistics 50/4 (August 2021), 991-1001. https://doi.org/10.15672/hujms.827556.
JAMA Boxer L. Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics. 2021;50:991–1001.
MLA Boxer, Laurence. “Subsets and Freezing Sets in the Digital Plane”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 4, 2021, pp. 991-1001, doi:10.15672/hujms.827556.
Vancouver Boxer L. Subsets and freezing sets in the digital plane. Hacettepe Journal of Mathematics and Statistics. 2021;50(4):991-1001.