Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 2, 362 - 372, 01.04.2022
https://doi.org/10.15672/hujms.902879

Abstract

References

  • [1] S. Amari, Information Geometry and Its Applications. Springer, 2016.
  • [2] K.M.R. Audenaert, In-betweenness, a geometrical monotonicity property for operator means, Linear Algebra Appl. 438, 1769-1778, 2013.
  • [3] R. Bhatia, S. Gaubert and T. Jain, Matrix versions of Hellinger distance, Lett. Math. Phys. 109, 2779-2781, 2019.
  • [4] T.H. Dinh, R. Dumitru and J.A. Franco, On the monotonicity of weighted power means for matrices, Linear Algebra Appl. 527, 128-140, 2017.
  • [5] T.H. Dinh, R. Dumitru and J.A. Franco, Some geometric properties of matrix means in different distance functions, Positivity, 24, 1419-1434, 2020.
  • [6] T.H. Dinh, B.K. Vo and T.Y. Tam, In-sphere property and reverse inequalities for matrix means, Electron. J. Linear Algebra, 35 (1), 35-41, 2019.
  • [7] T.H. Dinh, C.T. Le, B.K. Vo and T.D. Vuong, Weighted Hellinger Distance and In-betweenness property, Math. Inequal. Appl. 24 (1), 157-165, 2021.
  • [8] T.H. Dinh, C.T. Le, B.K. Vo and T.D. Vuong, The $\alpha$-z-Bures Wesserstein divergence, Linear Algebra Appl. 624, 267-280, 2021.
  • [9] F. Franco and R. Dumitru, Generalized Hellinger Metrics and Audenaert’s In- Betweenness, Linear Algebra Appl. 585, 191-198, 2020.
  • [10] F. Frank and E. Lieb, Monotonicity of a relative Renyi entropy, J. Math. Phys. 54, 122201, 2013.
  • [11] F. Hiai and D. Petz, Introduction to Matrix Analysis and Application, Springer, 2014.
  • [12] N. Lam and P.L. Le, Quantum divergences with p-power means, Linear Algebra Appl. 609, 289-307, 2021.
  • [13] N. Lam and R. Milley, Some notes on quantum Hellinger divergences with Heinz means, Electron. J. Linear Algebra, 36, 704-722, 2020.
  • [14] M.M. Wolf, Quantum channels and operations: Guided tour, Lecture Notes Avail- able at http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/ QChannelLecture.pdf, 2012.
  • [15] J. Pitrik and D. Virosztek, A divergence center interpretation of general symmetric Kubo-Ando means, and related weighted multivariate operator means, Linear Algebra Appl. 609, 203-217, 2021.

The matrix Heinz mean and related divergence

Year 2022, Volume: 51 Issue: 2, 362 - 372, 01.04.2022
https://doi.org/10.15672/hujms.902879

Abstract

In this paper, we introduce a new quantum divergence
$$\Phi (X,Y) = \Tr \left[\left(\dfrac{1-\alpha}{\alpha}+ \dfrac{\alpha}{1-\alpha}\right)X+2Y - \dfrac{X^{1 -\alpha}Y^{\alpha}}{\alpha}- \dfrac{X^{\alpha}Y^{1-\alpha}}{1-\alpha} \right],$$
where $0< \alpha <1$.
We study the least square problem with respect to this divergence. We also show that the new quantum divergence satisfies the Data Processing Inequality in quantum information theory. In addition, we show that the matrix $p$-power mean $\mu_p(t, A, B) = ((1-t)A^p + tB^p)^{1/p}$ satisfies the in-betweenness property with respect to the new divergence.

References

  • [1] S. Amari, Information Geometry and Its Applications. Springer, 2016.
  • [2] K.M.R. Audenaert, In-betweenness, a geometrical monotonicity property for operator means, Linear Algebra Appl. 438, 1769-1778, 2013.
  • [3] R. Bhatia, S. Gaubert and T. Jain, Matrix versions of Hellinger distance, Lett. Math. Phys. 109, 2779-2781, 2019.
  • [4] T.H. Dinh, R. Dumitru and J.A. Franco, On the monotonicity of weighted power means for matrices, Linear Algebra Appl. 527, 128-140, 2017.
  • [5] T.H. Dinh, R. Dumitru and J.A. Franco, Some geometric properties of matrix means in different distance functions, Positivity, 24, 1419-1434, 2020.
  • [6] T.H. Dinh, B.K. Vo and T.Y. Tam, In-sphere property and reverse inequalities for matrix means, Electron. J. Linear Algebra, 35 (1), 35-41, 2019.
  • [7] T.H. Dinh, C.T. Le, B.K. Vo and T.D. Vuong, Weighted Hellinger Distance and In-betweenness property, Math. Inequal. Appl. 24 (1), 157-165, 2021.
  • [8] T.H. Dinh, C.T. Le, B.K. Vo and T.D. Vuong, The $\alpha$-z-Bures Wesserstein divergence, Linear Algebra Appl. 624, 267-280, 2021.
  • [9] F. Franco and R. Dumitru, Generalized Hellinger Metrics and Audenaert’s In- Betweenness, Linear Algebra Appl. 585, 191-198, 2020.
  • [10] F. Frank and E. Lieb, Monotonicity of a relative Renyi entropy, J. Math. Phys. 54, 122201, 2013.
  • [11] F. Hiai and D. Petz, Introduction to Matrix Analysis and Application, Springer, 2014.
  • [12] N. Lam and P.L. Le, Quantum divergences with p-power means, Linear Algebra Appl. 609, 289-307, 2021.
  • [13] N. Lam and R. Milley, Some notes on quantum Hellinger divergences with Heinz means, Electron. J. Linear Algebra, 36, 704-722, 2020.
  • [14] M.M. Wolf, Quantum channels and operations: Guided tour, Lecture Notes Avail- able at http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/ QChannelLecture.pdf, 2012.
  • [15] J. Pitrik and D. Virosztek, A divergence center interpretation of general symmetric Kubo-Ando means, and related weighted multivariate operator means, Linear Algebra Appl. 609, 203-217, 2021.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Trung Hoa Dınh This is me 0000-0001-6303-1427

Anh Vu Le This is me 0000-0001-8879-3399

Cong Trinh Le 0000-0003-1323-3076

Ngoc Yen Phan This is me 0000-0001-7745-4148

Publication Date April 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 2

Cite

APA Dınh, T. H., Le, A. V., Le, C. T., Phan, N. Y. (2022). The matrix Heinz mean and related divergence. Hacettepe Journal of Mathematics and Statistics, 51(2), 362-372. https://doi.org/10.15672/hujms.902879
AMA Dınh TH, Le AV, Le CT, Phan NY. The matrix Heinz mean and related divergence. Hacettepe Journal of Mathematics and Statistics. April 2022;51(2):362-372. doi:10.15672/hujms.902879
Chicago Dınh, Trung Hoa, Anh Vu Le, Cong Trinh Le, and Ngoc Yen Phan. “The Matrix Heinz Mean and Related Divergence”. Hacettepe Journal of Mathematics and Statistics 51, no. 2 (April 2022): 362-72. https://doi.org/10.15672/hujms.902879.
EndNote Dınh TH, Le AV, Le CT, Phan NY (April 1, 2022) The matrix Heinz mean and related divergence. Hacettepe Journal of Mathematics and Statistics 51 2 362–372.
IEEE T. H. Dınh, A. V. Le, C. T. Le, and N. Y. Phan, “The matrix Heinz mean and related divergence”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, pp. 362–372, 2022, doi: 10.15672/hujms.902879.
ISNAD Dınh, Trung Hoa et al. “The Matrix Heinz Mean and Related Divergence”. Hacettepe Journal of Mathematics and Statistics 51/2 (April 2022), 362-372. https://doi.org/10.15672/hujms.902879.
JAMA Dınh TH, Le AV, Le CT, Phan NY. The matrix Heinz mean and related divergence. Hacettepe Journal of Mathematics and Statistics. 2022;51:362–372.
MLA Dınh, Trung Hoa et al. “The Matrix Heinz Mean and Related Divergence”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, 2022, pp. 362-7, doi:10.15672/hujms.902879.
Vancouver Dınh TH, Le AV, Le CT, Phan NY. The matrix Heinz mean and related divergence. Hacettepe Journal of Mathematics and Statistics. 2022;51(2):362-7.