Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 3, 658 - 665, 01.06.2022
https://doi.org/10.15672/hujms.817504

Abstract

References

  • [1] V. Ambarzumjan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53, 690–695, 1929.
  • [2] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78, 1–96, 1946.
  • [3] S.A. Buterin and V.A. Yurko, An inverse spectral problem for Sturm-Liouville operators with a large constant delay, Anal. Math. Phys. 9 (1), 17–27, 2019.
  • [4] M. Pikula, Opredelenie differencial’nogo operatora tipa Šturma-Liuvillya s zapazdyvayusim argumentom po dvum spektram, Mat. Vesnik 43, 159–171, 1991.
  • [5] M. Pikula, E. Čatrnja, and I. Kalčo, Spectral problems for operators with deviating arguments, Hacet. J. Math. Stat. 47 (5), 1172–1183, 2018.
  • [6] M. Pikula, D. Nedić, and E. Čatrnja, Partial invese spectral problems for the Sturm- Liouville operator with delay, Sarajevo J. Math. 16 (29), 41–54, 2020.
  • [7] M. Pikula, V. Vladičić, and D. Nedić, Inverse Sturm-Liouville problems with homogeneous delay, Siberian Math. J. 55 (2), 301-308, 2014.
  • [8] M. Pikula, V. Vladičić, and B. Vojvodić, Inverse spectral problem for Sturm-Liouville operators with a constant delay less than half the length of the interval and Robin boundary conditions, Results Math. 74 (1), 45, 2019.
  • [9] V. Vladičić and N. Djurić, Incomplete inverse problem for SturmLiouville type differential equation with constant delay, Results Math. 74 (4), 161, 2019.
  • [10] V. Vladičić and M. Pikula, An inverse problems for Sturm-Liouville-type differential equation with a constant delay, Sarajevo J. Math. 12 (24), 83-88, 2016.
  • [11] V.A. Yurko, Recovering differential operators with a retarded argument, Differ. Equ. 55 (4), 510–514, 2019.
  • [12] V.A. Yurko, S.A. Buterin, and M. Pikula, Sturm-Liouville differential operators with deviating argument, Tamkang J. Math. 48 (1), 49–59, 2017.

Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay

Year 2022, Volume: 51 Issue: 3, 658 - 665, 01.06.2022
https://doi.org/10.15672/hujms.817504

Abstract

In this paper we observe the operator $ D^{2}=D^{2}(h,H,q,\alpha)$, $h, H\in \overline{\mathbb{R}}=\mathbb{R}\cup \{-\infty,\infty\}$, $q(x)\in L_{2}\left[0,\pi \right]$, $\alpha\in (0,1) $ and construct and partially transform its characteristic function. Those transformations enable more complete asymptotic decomposition of the zeroes and eigenvalues of the operator.

The goal of this paper is to contribute to the development of the spectral theory of differential operators with homogeneous delay.

References

  • [1] V. Ambarzumjan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53, 690–695, 1929.
  • [2] G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Math. 78, 1–96, 1946.
  • [3] S.A. Buterin and V.A. Yurko, An inverse spectral problem for Sturm-Liouville operators with a large constant delay, Anal. Math. Phys. 9 (1), 17–27, 2019.
  • [4] M. Pikula, Opredelenie differencial’nogo operatora tipa Šturma-Liuvillya s zapazdyvayusim argumentom po dvum spektram, Mat. Vesnik 43, 159–171, 1991.
  • [5] M. Pikula, E. Čatrnja, and I. Kalčo, Spectral problems for operators with deviating arguments, Hacet. J. Math. Stat. 47 (5), 1172–1183, 2018.
  • [6] M. Pikula, D. Nedić, and E. Čatrnja, Partial invese spectral problems for the Sturm- Liouville operator with delay, Sarajevo J. Math. 16 (29), 41–54, 2020.
  • [7] M. Pikula, V. Vladičić, and D. Nedić, Inverse Sturm-Liouville problems with homogeneous delay, Siberian Math. J. 55 (2), 301-308, 2014.
  • [8] M. Pikula, V. Vladičić, and B. Vojvodić, Inverse spectral problem for Sturm-Liouville operators with a constant delay less than half the length of the interval and Robin boundary conditions, Results Math. 74 (1), 45, 2019.
  • [9] V. Vladičić and N. Djurić, Incomplete inverse problem for SturmLiouville type differential equation with constant delay, Results Math. 74 (4), 161, 2019.
  • [10] V. Vladičić and M. Pikula, An inverse problems for Sturm-Liouville-type differential equation with a constant delay, Sarajevo J. Math. 12 (24), 83-88, 2016.
  • [11] V.A. Yurko, Recovering differential operators with a retarded argument, Differ. Equ. 55 (4), 510–514, 2019.
  • [12] V.A. Yurko, S.A. Buterin, and M. Pikula, Sturm-Liouville differential operators with deviating argument, Tamkang J. Math. 48 (1), 49–59, 2017.
There are 12 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Dragana Nedić This is me 0000-0003-2572-1755

Elmir Catrnja 0000-0002-1082-7269

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 3

Cite

APA Nedić, D., & Catrnja, E. (2022). Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay. Hacettepe Journal of Mathematics and Statistics, 51(3), 658-665. https://doi.org/10.15672/hujms.817504
AMA Nedić D, Catrnja E. Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):658-665. doi:10.15672/hujms.817504
Chicago Nedić, Dragana, and Elmir Catrnja. “Spectral Properties of Some Differential Operators of Sturm-Liouville Type With Homogeneous Delay”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 658-65. https://doi.org/10.15672/hujms.817504.
EndNote Nedić D, Catrnja E (June 1, 2022) Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay. Hacettepe Journal of Mathematics and Statistics 51 3 658–665.
IEEE D. Nedić and E. Catrnja, “Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 658–665, 2022, doi: 10.15672/hujms.817504.
ISNAD Nedić, Dragana - Catrnja, Elmir. “Spectral Properties of Some Differential Operators of Sturm-Liouville Type With Homogeneous Delay”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 658-665. https://doi.org/10.15672/hujms.817504.
JAMA Nedić D, Catrnja E. Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay. Hacettepe Journal of Mathematics and Statistics. 2022;51:658–665.
MLA Nedić, Dragana and Elmir Catrnja. “Spectral Properties of Some Differential Operators of Sturm-Liouville Type With Homogeneous Delay”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 658-65, doi:10.15672/hujms.817504.
Vancouver Nedić D, Catrnja E. Spectral properties of some differential operators of Sturm-Liouville type with homogeneous delay. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):658-65.