Research Article
BibTex RIS Cite
Year 2022, Volume: 51 Issue: 3, 800 - 816, 01.06.2022
https://doi.org/10.15672/hujms.954555

Abstract

References

  • [1] S. Amari, Differential-geometrical methods in statistics. Lecture Notes in Statistics, Springer-Verlag, New York, 1985.
  • [2] S. Decu, S. Haesen, L. Verstraelen and G. E. Vîlcu, Curvature invariants of statistical submanifolds in Kenmotsu statistical manifolds of constant $\phi$-sectional curvature, Entropy 20 (7), 529, 2018.
  • [3] I.K. Erken, C. Murathan and A. Yazla, Almost cosympletic statistical manifolds, Quaest. Math. 43 (2), 265–282, 2020.
  • [4] H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl. 27 (3), 420–429, 2009.
  • [5] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical mani- folds, in: Geometry of Cauchy-Riemann submanifolds, 179–215, Springer, Singapore, 2016.
  • [6] H. Furuhata, I. Hasegawa, Y. Okuyama and K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom. 108 (3), 1175–1191, 2017.
  • [7] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117, 179–186, 2017.
  • [8] J. B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42 (3), 435–445, 2005.
  • [9] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24, 93–103, 1972.
  • [10] T. Kurose, Dual connections and affine geometry, Math. Z. 203 (1), 115–121, 1990.
  • [11] H. Matsuzoe, Statistical manifolds and affine differential geometry, Adv. Stud. Pure Math. 57, 303–321, 2010.
  • [12] C.R. Min, S.O. Choe and Y.H. An, Statistical immersions between statistical manifolds of constant curvature, Glob. J. Adv. Res. Class. Mod. Geom. 3(2), 66–75, 2014.
  • [13] G. Pitis, Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007.
  • [14] G. Pitis, Contact forms in geometry and topology, in: Topics in Modern Differential Geometry, Atlantis Trans. Geom., 2017.
  • [15] H. Shima and K. Yagi, Geometry of Hessian manifolds, Differential Geom. Appl. 7 (3), 277–290, 1997.
  • [16] A.N. Siddiqui, M.H. Shahid, On totally real statistical submanifolds, Filomat, 32 (13), 4473–4483, 2018.
  • [17] A.N. Siddiqui, Y.J. Suh and O. Bahadr Extremities for Statistical Submanifolds in Kenmotsu Statistical Manifolds, Filomat, 35 (2), 591–603, 2021.
  • [18] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. 21, 21–38, 1969.
  • [19] J.A. Vickers, Distributional geometry in general relativity, J. Geom. Phys. 62 (3), 692–705, 2012.
  • [20] G.E. Vîlcu, Almost product structures on statistical manifolds and para-Kähler-like statistical submersions, Bull. Sci. Math. 171, 103018, 2021.
  • [21] P.W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Statist. Math. 41 (3), 429–450, 1989.
  • [22] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Mathematics, 30. Birkhäuser, Boston, Mass., 1983.

Some results on Kenmotsu statistical manifolds

Year 2022, Volume: 51 Issue: 3, 800 - 816, 01.06.2022
https://doi.org/10.15672/hujms.954555

Abstract

In this paper, we first investigate the Kenmotsu statistical structures built on a Kenmotsu space form and determine some special Kenmotsu statistical structures under two curvature conditions. Secondly, we show that if the holomorphic sectional curvature of the hypersurface orthogonal to the structure vector in a Kenmotsu statistical manifold is constant, then the $\phi-$sectional curvature of the ambient Kenmotsu statistical manifold must be constant $-1$, and the constant holomorphic sectional curvature of the hypersurface is $0$. In addition, some non-trivial examples are given to illustrate the results of this paper.

References

  • [1] S. Amari, Differential-geometrical methods in statistics. Lecture Notes in Statistics, Springer-Verlag, New York, 1985.
  • [2] S. Decu, S. Haesen, L. Verstraelen and G. E. Vîlcu, Curvature invariants of statistical submanifolds in Kenmotsu statistical manifolds of constant $\phi$-sectional curvature, Entropy 20 (7), 529, 2018.
  • [3] I.K. Erken, C. Murathan and A. Yazla, Almost cosympletic statistical manifolds, Quaest. Math. 43 (2), 265–282, 2020.
  • [4] H. Furuhata, Hypersurfaces in statistical manifolds, Differential Geom. Appl. 27 (3), 420–429, 2009.
  • [5] H. Furuhata and I. Hasegawa, Submanifold theory in holomorphic statistical mani- folds, in: Geometry of Cauchy-Riemann submanifolds, 179–215, Springer, Singapore, 2016.
  • [6] H. Furuhata, I. Hasegawa, Y. Okuyama and K. Sato, Kenmotsu statistical manifolds and warped product, J. Geom. 108 (3), 1175–1191, 2017.
  • [7] H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M. H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117, 179–186, 2017.
  • [8] J. B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds, J. Korean Math. Soc. 42 (3), 435–445, 2005.
  • [9] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24, 93–103, 1972.
  • [10] T. Kurose, Dual connections and affine geometry, Math. Z. 203 (1), 115–121, 1990.
  • [11] H. Matsuzoe, Statistical manifolds and affine differential geometry, Adv. Stud. Pure Math. 57, 303–321, 2010.
  • [12] C.R. Min, S.O. Choe and Y.H. An, Statistical immersions between statistical manifolds of constant curvature, Glob. J. Adv. Res. Class. Mod. Geom. 3(2), 66–75, 2014.
  • [13] G. Pitis, Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Brasov, Brasov, 2007.
  • [14] G. Pitis, Contact forms in geometry and topology, in: Topics in Modern Differential Geometry, Atlantis Trans. Geom., 2017.
  • [15] H. Shima and K. Yagi, Geometry of Hessian manifolds, Differential Geom. Appl. 7 (3), 277–290, 1997.
  • [16] A.N. Siddiqui, M.H. Shahid, On totally real statistical submanifolds, Filomat, 32 (13), 4473–4483, 2018.
  • [17] A.N. Siddiqui, Y.J. Suh and O. Bahadr Extremities for Statistical Submanifolds in Kenmotsu Statistical Manifolds, Filomat, 35 (2), 591–603, 2021.
  • [18] S. Tanno, The automorphism groups of almost contact Riemannian manifolds, Tohoku Math. J. 21, 21–38, 1969.
  • [19] J.A. Vickers, Distributional geometry in general relativity, J. Geom. Phys. 62 (3), 692–705, 2012.
  • [20] G.E. Vîlcu, Almost product structures on statistical manifolds and para-Kähler-like statistical submersions, Bull. Sci. Math. 171, 103018, 2021.
  • [21] P.W. Vos, Fundamental equations for statistical submanifolds with applications to the Bartlett correction, Ann. Inst. Statist. Math. 41 (3), 429–450, 1989.
  • [22] K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Progress in Mathematics, 30. Birkhäuser, Boston, Mass., 1983.
There are 22 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Yan Jıang 0000-0001-8004-983X

Feng Wu 0000-0003-0409-9960

Liang Zhang 0000-0002-6091-9313

Publication Date June 1, 2022
Published in Issue Year 2022 Volume: 51 Issue: 3

Cite

APA Jıang, Y., Wu, F., & Zhang, L. (2022). Some results on Kenmotsu statistical manifolds. Hacettepe Journal of Mathematics and Statistics, 51(3), 800-816. https://doi.org/10.15672/hujms.954555
AMA Jıang Y, Wu F, Zhang L. Some results on Kenmotsu statistical manifolds. Hacettepe Journal of Mathematics and Statistics. June 2022;51(3):800-816. doi:10.15672/hujms.954555
Chicago Jıang, Yan, Feng Wu, and Liang Zhang. “Some Results on Kenmotsu Statistical Manifolds”. Hacettepe Journal of Mathematics and Statistics 51, no. 3 (June 2022): 800-816. https://doi.org/10.15672/hujms.954555.
EndNote Jıang Y, Wu F, Zhang L (June 1, 2022) Some results on Kenmotsu statistical manifolds. Hacettepe Journal of Mathematics and Statistics 51 3 800–816.
IEEE Y. Jıang, F. Wu, and L. Zhang, “Some results on Kenmotsu statistical manifolds”, Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, pp. 800–816, 2022, doi: 10.15672/hujms.954555.
ISNAD Jıang, Yan et al. “Some Results on Kenmotsu Statistical Manifolds”. Hacettepe Journal of Mathematics and Statistics 51/3 (June 2022), 800-816. https://doi.org/10.15672/hujms.954555.
JAMA Jıang Y, Wu F, Zhang L. Some results on Kenmotsu statistical manifolds. Hacettepe Journal of Mathematics and Statistics. 2022;51:800–816.
MLA Jıang, Yan et al. “Some Results on Kenmotsu Statistical Manifolds”. Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 3, 2022, pp. 800-16, doi:10.15672/hujms.954555.
Vancouver Jıang Y, Wu F, Zhang L. Some results on Kenmotsu statistical manifolds. Hacettepe Journal of Mathematics and Statistics. 2022;51(3):800-16.